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UNIT I : ELECTROSTATICS 

Coulomb‟s Law – Charge distributions – Lines of force and flux – Gauss law and its 

applications – The potential function – Poisson‟s equation and Laplace equation – 

Equipotential surfaces – Field due to continuous charge distribution – Energy associated 

to an electrostatic field – Electrostatic uniqueness theorem. 

 

1.1 Introduction 

 The theory which describes physical phenomena related to the interaction between 

stationary electric charges or charge distributions in space with stationary boundariesis 

called electrostatics. The forces on all stationary charges are purely electrical. Charge is 

the fundamental characteristic property of the elementary particle that constitutes matter. 

The fundamental law for electrostatic forces is Coulomb‟s law. The basic concepts and 

other laws of electrostatic can be derived from it. 

1.2Coulomb’s Law 

 According to Coulomb, the force of attraction or repulsion between two electric 

point charges is directly proportional to the product of magnitude of two charges and 

inversely proportional to the square of the distance between them. The direction of force 

is always along the line joining the two charges. For the charges of opposite sign, the 

force is attractive while that for the same sign, it is repulsive. 

Consider two point charges q and Q separated by a distance r (Figure 1.1a).  

Mathematically the force F of interaction between two point charges is given by  

     

 

 

 

     
2r

Qq
F

 

     
2r

Qq
KF 

 

where K is known as proportionality constant and is equal to 1/4πε0, hence we write 

r̂
r

Qq

4

1
F

2

0
     --- 1.1 

The equation 1.1 is known as Coulomb‟s law of force in electrostatics. 

Figure 1.1a 
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Statement: The force of attraction or repulsion between any two point charges is directly 

proportional to the product of magnitude of charges and inversely proportional to the 

square of the distance between them. 

The constant ε0is called the permittivity of free space. In MKS units, the force, 

distance and charge are measured in Newton, metre and Coulomb respectively. Thus ε0= 

8.85 × 10
-12 

C
2
-N

-1
-m

-2
. 

1.3 The Electric field strength 

 The region surrounding any electric charge or group of point charges, in which the 

effect of its electrostatic force can be experienced is called an electric field. The strength 

of electric field i.e. electric field strength (E) is defined as the force experienced by a unit   

positive test charge placed at that. 

 Consider some point charges q1, q2, q3, …….qn at distances r1, r2,…….rn from the 

test charge Q as shown in Figure 1.1b.  

Figure 1.1b 

 

According to the principle of superposition, the total force acting on a test charge due to 

all other charges is 

     FFFF 11     --- 1.2 
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where 

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
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is called the electric field strength. The electric field varies from point to point. The 

electric field intensity can be defined as the force per unit charge and is measured in 

Newton/Coulomb. 

1.4 Charge distributions  

The forces and electric fields due to point charges are only considered so far. But 

practically in addition to point charges, there is a possibility for the existence of 

continuous charge distributions along a line, on a surface or in a volume. Thus there are 

four types of charge distributions, which are 

a. Point charge         

b. Line charge  

c.Surface charge and 

d. Volume charge 

a. Point charge distribution 

 If the dimension of a surface carrying charge is very small compared to the region 

surrounding it, then the surface can be treated as a point and the corresponding charge is 

called a point charge. The point charge has a definite position but not a dimension as 

shown in Figure 1.2a. The point charge can be either positive or negative. 

 

 

(a) (b) 
 

(c)             (d) 

Figure 1.2 

b. Line charge distribution 

 It is possible that the charge may be extended along a line. Such a uniform 

distribution of charge along a line is called a line charge. This is shown in                         

Figure 1.2b.The line charge density is denoted by λ and is defined as charge per unit 

length. 
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metre/Coulomb
lengthUnit

eargCh
  

c. Surface charge distribution 

 If the charge is distributed uniformly over a two dimensional surface then it is 

called a sheet of charge or a surface charge. The surface charge is shown in Figure 1.2c. 

The surface charge density is denoted by σ and is defined as charge per unit surface area. 

2metre/Coulomb
areaUnit

eargCh
  

d. Volume charge distribution 

 If the charge is distributed uniformly in a volume then it is called volume of 

charge. The volume charge is shown in Figure 1.2d. The volume charge density is 

denoted by ρ and is defined as charge per unit volume. 

3metre/Coulomb
volumeUnit

eargCh


 

1.5 Field due to continuous charge distributions  

The definition of the electric field i.e. equation 1.5 assumes that the source charge 

is a set of discrete point charges qi. However, we may consider these charges as the 

continuous charge distribution over some region (i.e. distributed continuously over some 

region). 

In each case, we can divide the total charge into several infinitesimal parts, each 

of which can be considered as a point charge. We thus represent the total charge as a 

continuous collection of point charges and obtain the field intensity at any point due to 

the total charge as the vector superposition of the field intensities due to individual point 

charges. However, now we have to evaluate integrals instead of summation of a few 

terms since the distribution of charges is continuous as a substitute of being discrete. 

Hence in equation 1.5, the summation may be replaced by an integral i.e. 

 

r̂
r

dq

4

1
E

2

0


             --- 1.6 

1.5.1 Electric field due to line charge 

 Consider a line charge distribution having a linear charge density λ as shown in 

Figure 1.3a. The charge dq on the differential length dl is λdl. 

 Hence the electric field dE at a point P due to dq is given by 

r̂
r4

dl
r̂

r4

dq
dE

2

0

2

0 





            --- 1.7 
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The total electric field at a point P due to line charge can be obtained by integrating eqn. 

1.7 over the length of the charge 

 dl
r

r̂

4

1
E

Line

2

0




      ---1.8 

1.5.2 Electric field due to surface charge 

 Consider a surface charge distribution having a surface charge density σ as shown 

in Figure 1.3b. The charge dq on the differential surface area ds is σds. 

 Hence the electric field dE at a point P due to dq is given by 

r̂
r4

ds
r̂

r4

dq
dE

2

0

2

0 







    

--- 1.9 

The total electric field E at a point P due to surface charge can be obtained by integrating 

equation 1.9 over the surface area is 

  



Surface

2
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r
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4

1
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--- 1.10 

1.5.3 Electric field due to volume charge 

 Consider a volume charge distribution having a volume charge density ρ as shown 

in Figure 1.3c. The charge dq on the differential volume dτ is ρdτ.Hence the electric field 

dE at a point P due to dq is given by 

r̂
r4

d
r̂

r4

dq
dE

2

0

2

0 





           

--- 1.11 

The total electric field at a point P due to surface charge can be obtained by 

integrating eqn. 1.11 over the volume in which charge is accumulated. 

  



Volume
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r
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4

1
E

    

---1.12

 

(a) (b) 

Figure 1.3 

(c) 
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Thus all type of charge distribution is possible. Therefore the total electric field at 

a point is the vector sum of individual electric field intensities produced by all charges at 

a point. Hence 

                                   --- 1.13 

where EP, EL, ES and EV are the field intensities due to point, line, surface and volume 

charge distributions respectively. 

1.6Lines of force and flux 

 The concept of lines of force is a convenient way to express the electric fieldE. A 

line of fore is an imaginary line or curve drawn in such a way that its direction at any 

point gives the direction of the electric field at that point. The total number of lines per 

unit cross sectional area is called as the flux density and is proportional to the magnitude 

of the electric field E. The number of flux lines also depends on the magnitude of the 

charge. The flux density is stronger in the region where the field lines are very close and 

is weaker in the region where the field lines are far apart. 

The properties of the filed lines are summarized as follows. 

1. They emanate from a positive point charge an end at a negative point charge 

symmetrically in all possible directions (Figure 1.4a). 

2. They originate on positive charges and terminate on negative charges (Figure 1.4b). 
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Figure 1.4 
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3. They can never cross each other.  

4. There is more number of lines if electric field is stronger.  

5. The lines are independent of the medium in which charges are placed. 

6. The lines always enter or leave the charged surface normally. 

1.7 Gauss law and its applications 

Gauss law is the inverse of Coulomb‟s law. By Coulomb‟s law, one can calculate 

the electric field E for a given charge. But the Gauss‟s law enables us to determine charge 

only if E is known. 

 Gauss‟s law gives a relation between the flux over any closed surface, called 

Gaussian surface and the total charge enclosed within the surface. 

Statement: “The total electric flux over any closed surface is equal to (1/ε0) times the total 

charge enclosed within the surface”. 

Proof: As the electric field strength is proportional to the number of lines per unit cross 

sectional area (i.e. area perpendicular to the direction of lines of force), the flux of E(i.e. ʃ 

E·da) through any surface is proportional to the number of field lines passing through that 

surface. 

 Now let us consider a point charge placed in the origin, and then the flux of E 

through a sphere of radius r is 

 

















Surface

2

0Surface

dsr̂
r

q

4

1
dsE      ---1.14 

According to spherical coordinates,  r̂ddsinrds 2  , hence 

  
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


Surface 0Surface

r̂r̂ddsin
4

q
dsE  

  



Surface 0Surface

ddsin
4

q
dsE

 

  
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  
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
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 

    

--- 1.16 

From equation 1.16 we note that the radius of the sphere cancels out, i.e. the same 

number of field lines passes through any sphere centred at the origin regardless of its size 

and shape. Hence the flux through any surface enclosing the charge is equal to (q/ε0). 

 If there are number of charges at the origin instead of a single charge, then 

according to the principle of superposition the total electric field is the sum of all the 

individual fields. Thus 


n

i

iEE

 

 

 

 

 

 

Then the flux through any surface enclosing all the fields is 

   
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
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As shown in Figure 1.5, a charge outside the surface would not contribute 

anything to the total flux, since its field lines enter in one side and emerge out the other 

side. Therefore for any closed surface, the total flux is 











 Enclosed

0Surface

Q
1

dsE

    

--- 1.17 

Where QEnclosed = q1 + q2 + q3 +   is the total charge enclosed within the 

surface. This is Gauss‟s law. The equation 1.17 is also known as the „integral form of 

Gauss‟s law‟. 

Figure 1.5 
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1.7.1 Differential form of Gauss’s law 

 A differential form of Gauss‟s law for continuous charge distribution is obtained 

by applying the divergence theorem to equation 1.17 

  dEdsE
VolumeSurface

                 --- 1.18 

The charge enclosed within the surface S can be expressed in terms of the charge 

density ρas  

  dQ
Volume

Enclosed  

Now the Gauss‟s law (i.e. equation 1.17) becomes 












  d

1
dsE

Volume 0Surface

   --- 1.19 

Comparing equations 1.18 and 1.19, we get 

   
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
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
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d
1

dE    --- 1.20 

The equation 1.20 is hold good for any integral and hence the integrands must be 

equal. Therefore 


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
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

0

1
E     --- 1.21 

Equation 1.21represents the differential form of Gauss‟s law.It states that the divergence 

of the electric field intensity at any point is equal to (1/ε0) times the volume charge 

density at that point. This is Maxwell‟s divergence form of electric field, E. 

1.7.2 Applications of Gauss law 

 Gauss‟s law can be used tocalculate the electric field Efor symmetrical charge 

distribution, such as point charge, an infinite line charge, an infinite sheet of charge and a 

spherical distribution of charge.The symmetry is crucial for the application of Gauss‟s 

law in its integral form. There are only three kinds of symmetry. They are 

(i) spherical symmetry,  

(ii) cylindrical symmetry and  

(iii) plane symmetry. 
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(a) Electric field due to a uniformly charged sphere or due to spherical charge 

distribution 

 Consider a uniform spherical charge distribution of radius R. Let q be the total 

charge on the sphere and ρbe the volume charge density. Now our aim is to find the 

electric filed intensity at a point P (i) outside the sphere, (ii) on the sphere and (iii) inside 

the sphere. 

Case (i):At a point outside the sphere 

 Let us consider a point P at a distance r from the centre O, such thatr > R. To find 

the electric field at a point P, imagine a Gaussian spherical surface of radius r as 

illustrated in Figure 1.6a. By symmetry the E at all points on the Gaussian surface is equal 

and normal to the surface.The flux through the surface is given by 

 
SurfaceSurface

EdsdsE  (angle between E and ds  is zero) 

Since E is constant over the Gaussian surface, then  

2

Surface

r4EdsE 
 

 

By Gauss‟s law                                
0

2 q
r4E


  

or 
2

0 r

q

4

1
E


  Newton/Coulomb  --- 1.22 

or r̂
r

q

4

1
E

2

0



Newton/Coulomb     --- 1.23 

Thus the electric field at any point outside the charged sphere is the same as if the charge 

on the sphere concentrated at the centre. 

 

(a) (b) (c) 

Figure 1.6 
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Case (ii) At a point on the surface of the sphere 

Here r = R, (Figure 1.6b) hence 
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q

4
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E
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  Newton/Coulomb                                --- 1.24 

or    r̂
R

q

4

1
E
~
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0
  Newton/Coulomb                             --- 1.25 

Case (iii)At apoint on the surface of the sphere 

 Let the point P be inside the sphere at a distance r from the centre O. Construct a 

Gaussian sphere with radius r passing through the point P as shown in Figure 1.6c. Then 

according to Gauss‟s law, 
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q
dsE
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Substituting the value of ρ, we have 
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3

0

3

0 R4

qr

R
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4
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E





     --- 1.26 

or              r̂
R4

qr
E
~

3

0
 Newton/Coulomb                                 --- 1.27 

Thus the electric field intensity at appoint inside the sphere depends on r. It is maximum 

atr=R. 

(b) Electric field due to a uniformly charged cylinder 

 Consider a portion of a uniformly charged infinitely long cylinder with radius 

aand surface charge density σ. Now we wish to find the electric field at a point P which is 

at a distance r from the axis of the cylinder. For this construct a Gaussian surface in the 

form of a cylinder of length l with radius r and coaxial with the charged cylinder as 

shown in Figure 1.7.  

The flux through the cylindrical Gaussian surface is 

rl2EdsEdsE
Surface

   

 

 

 

 

 

 

 

According to Gauss‟s law,  

enclosed
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Q
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dsE 
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




 

 

0Surface

1
dsE

    [Total charge enclosed within the Gaussian surface]            

The total charge enclosed by the Gaussian surface is given by 

Charge = volume × volume density of charge 

Hence the charge enclosed in Gaussian surface = πr
2
lρ 

 


 lr
1

dsE 2

0Surface  

 

Figure 1.7 
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


 lr
1

dsE 2

0Surface  




 lr
1

rl2E 2

0

 

or  
02

r
E






     

--- 1.28 

or  r̂
2

r
E
~

0


      --- 1.29 

Thus the electric field E inside a charged cylinder is directly proportional to the distance 

of the point from the axis of the cylinder. 

(c) Electric field due to an infinite plane of charge 

 Consider a portion of an infinite thin non-conducting plane sheet of charge as 

shown in Figure 1.8. To find the electric field E near it, construct a Gaussian surface of 

cross-sectional area A in the form of a pill-box extending equal distances above and 

below the planeas shown in Figure 1.8. The direction of the electric field E is normal to 

the end faces andaway from the plane. No lines of force pierce through the curved surface 

of the pill box, therefore the curved surface does not contribute to the flux.i.e. 

.0daE
Surface

   Hence the total flux is equal to the sum of the contribution from the two 

end faces. Thus 

Enclosed

Surface 0

Q
1

dsE 









  

 

 

Figure 1.8 
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Enclosed

Surface 0

Q
1

EAEAdsE 











 

Enclosed

Surface 0

Q
1

EA2dsE 









  

The total charge enclosed by the cylinder is σA.  

Hence 

 











Surface 0

A
1

EA2dsE  

00 A2

A
Eor

A
EA2











 

or     
02

E





 

or     n̂
2

E
0






     

--- 1.30 

In equation 1.30, n̂  is a unit vector pointing away from the surface. Here we note 

that the electric field is independent of the distance of the point from the sheet. So E is the 

same for all points on each side of the sheet. 

1.8The potential function 

 The electric field around a charged body can be described not only by the electric 

field intensity E but also by a scalar quantity called the electric potential V. 

 The electric potential at a point in an electric field is defined as the amount of 

work done by an external agent in moving a unit positive charge from infinity to that 

point against the electrical force of the field. If W is the amount of work done in bringing 

a positive test charge Q from infinity to a point in the electric field, then the potential at 

that point is 

Q

W
V       --- 1.31

 

If W is measured in joules, Q in Coulombs, then the potential V is in volts. Hence 

Coulomb1

Joule1
Volt1 

     
--- 1.32

 

Since both W and Q are scalar quantities, the potential V also a scalar. 
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1.8.1 The potential difference  

 Consider two points A and B separated by a distance r as shown in Figure 1.9. The 

potential difference between two points is numerically equal to the work done in moving 

a unit positive test charge (q) from one point (a) to another point (b). 

 

 

 

 

Thus the potential difference between two points a and b is defined as 

q

W
)a(V)b(V ab

    
---1.33 

where, Wab is the work done by an external agent in moving a positive test charge q from 

a to b. 

1.8.2 Relation between V and E 

 Consider two points a and b in an electric field as shown in Figure 1.10. Let the 

charge q is moved from a to b along the path as shown by the external agent. The electric 

force exerted on q by Q  is qE. The external agent would supply an equal and opposite 

force F on the charge in order to move it. Hence the force is 

qEF 
     

---1.34 

 

 

 

 

Figure 1.9 

Figure 1.10 
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The charge moves a small distance dl along the closed path by the application of above 

force. Therefore the work done by the external agent is 

dlFdW 
     

---1.35 

The total work done in moving the charge from a to b is obtained by integrating the               

equation 1.35. 

  

b

a

ab dlFWdW
    

---1.36 

Substituting equation 1.34 in 1.36, we have 

  

b

a

ab dlqEW  

 

b

a

ab dlEqW

 

 

b

a

ab dlE
q

W

 

But by definition 

(From equation 1.33) 

 

Hence, the potential difference between the points a and b is 

 --- 1.37 

 

From the fundamental theorem of gradient, we have 

     afbfdlf

b

a

      

     aVbVdlV

b

a

                --- 1.38 

Now, using equation 1.37, the equation 1.38 can be written as  

    

b

a

b

a

dlEdlV

 

 

q

W
)a(V)b(V ab

 

b

a

dlE)a(V)b(V
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This is true for any points a and b, therefore the integrands must be equal. Therefore 

 

 VE       --- 1.39 

Thus the electric field is the gradient of a scalar potential. 

1.8.3 Potential due to a point charge 

 Consider a positive point charge Q. The electric field of Q is radially outwards as 

shown in Figure 1.11. 

 Let a test charge q be moved along a radial line from a to b to calculate the 

potential difference between them. 

 

 

 

 

 

 

 

 

From equation 1.37, we have 

 

b

a

dlE)a(V)b(V     --- 1.37 

As E points in the right direction and test charge  q is moved towards left i.e. b, E and dl 

are 180° apart. Therefore E.dl = ‒E.dl. Thus the eqn. 1.37 becomes 

 

b

a

dlE)a(V)b(V

 

Since the distance r is measured from charge Q i.e. right and dl is measured towards left 

i.e. b, then dl = –dr. Hence the equation 1.30 becomes as 

 

b

a

drE)a(V)b(V                --- 1.40 

The electric field of a point charge is (From equation 1.5) 

r̂
r

q

4

1
E

2

0


   

 

Figure 1.11 
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Substituting in equation 1.40, we have 

    drr̂
r4

q
aVbV

b

a

r

r

2

0

 


 

    r̂dr
r

1

4

q
aVbV

b

a

r

r

2

0




 

    












ab0 r

1

r

1

4

q
aVbV

 

If the point a is situated at an infinity, then r = ∞. Hence V(a) = 0. Thus rb = r, then the 

potential at b is represented by V. 

                --- 1.41 

 

                                      --- 1.42 

 

1.9 Poisson’s and Laplace equation 

 The electric field E can be written as the gradient of a scalar potential 

     VE       --- 1.39 

Taking divergence on both sides of equation 1.39, we get 

 VE   

VE 2      --- 1.43 

i.e. the divergence of E is the Lapalacian of V 

The differential form of Gauss law is 














0

1
E

     
--- 1.21 

Comparing eqns. 1.43 and 1.21, we have 














0

2 1
V     --- 1.44 

This is known as Poisson‟s equation. 

For Cartesian coordinate system 





















































z

V

zy

V

yx

V

x
V  
















r

1

4

q
V

0

r4

q
V

0

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







































2

2

2

2

2

2

z

V

y

V

x

V
V  

Poisson‟s equation for Cartesian coordinate system can be written as 


















































0

2

2

2

2

2

2
2 1

z

V

y

V

x

V
V             ---   1.45 

If there are no charges in the region, i.e. for free space ρ=0. Hence equation 1.44 becomes
 

0
0

V
0

2 











     
--- 1.46 

This is known as Laplacian equationand is valid only in the region of free charges. 

From equation 1.45, we have 

0
z

V

y

V

x

V
V

2

2

2

2

2

2
2 






































             ---   1.47 

This second order partial differential equation relating the rate of change of potential V in 

three space must be satisfied for any charge free region 

An alternate of equation 1.47 is ·E = 0. 

It means that the number of lines of electric field strength emerging from a unit 

volume is zero or lines of electric field strength are continuous. 

Poisson‟s equation is a differential equation which relates the potential at a point 

to the volume charge density at that point. If the volume charge density in a region is 

zero, then Poisson‟s equation reduces to Laplace‟s equation. Laplace‟s equation states 

that the Laplacian of the electrostatic potential in a region devoid of charges is equal to 

zero, 

If we take the curl of E, then 

  0VE 

 
i.e. the curl of gradient is zero. The curl law is used only to show that the electric field E 

could be expressed as the gradient of a scalar.  

1.10Equipotential surface 

In an electric field, there are many points at which the electric potential is the 

same. There can be number of points which can be located at the same distance from the 

charge. The locus of the points, all of which have the same electric potential, is called an 
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equipotential surface. In other words, an equipotential surface is an imaginary surface in 

an electric field of a given charge distribution, in which all the points on the surface are at 

the same electric potential. 

 The potential difference between any two points on the equipotential surface is 

always zero. It means the work done to move a test charge from one point to another in an 

equipotential surface is zero. For a particular charge distribution, there can be many 

equipotential surfaces existing in an electric field. 

 Consider a point charge sited at the origin of the sphere. The potential at any point 

which is at a distance r from the origin i.e. point charge is given by (From equation 1.41) 

r4

Q
V

0
                                                     --- 1.41 

Therefore the potential is the same at all points which are at a distance r from Q 

and the surface joining all such points in the field is called an equipotential surface. 

There exists other equipotential surfaces in the field of a point charge at r=r1, r=r2, 

….. in the form of concentric spheres as shown in Figure 1.12. 

It can benoted that the potential V is inversely proportional to the distance r. As a 

result V1 at r1 is the maximum and it goes on decreasing with the increase of r. Thus 

V1>V2>V3> ……However, the potential of equipotential surfaces goes on increasing as 

one move from infinity to the position of the charge i.e. against the direction of electric 

field. 

In the case of uniform field, the equipotential surfaces are perpendicular to E and 

are equispaced for fixed increment of voltages. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12 
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The work done to move a charge along a circular path of radius r1 in the direction 

of dl as shown in Figure 1.13a is zero. This is because E and dl are perpendicular to each 

other. Thus the electric field and equipotential surfaces are mutually perpendicular. 

 

 

 

 

 

 

 

However, in the case of non uniform field the field lines tend to diverge in the 

direction of decreasing E. Hence equipotential surfaces are still perpendicular to the 

direction of E but are not equispaced for fixed amount of increment voltages as shown in 

Figure 1.13b. 

 

 

 

 

 

 

 

 

1.11 Energy associated to an electrostatic field 

 Electrostatic energy may be considered as the energy obligatory to launch a given 

charge distribution in space. Let us calculate the amount of work required to assemble of 

point charges. For simplicity here we consider only three charges placed in free space as 

shown in Figure 1.14. 

First consider the charge q1. No work has to be done to bring the first charge q1 at P1, 

since there is no field initially to oppose the motion of charge q1. However, work is 

needed to bring the charge q2 nearer to q1 at P2. The work required to place the charge q2 

at P2 is  

     )P(VqW 2122      ---1.48 

where V1 is the potential due to charge q1 at P2. 

  

 

 

 

 

 

 

Figure 1.13a 

Figure 1.13b 
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Figure 1.14 

 

  

But the potential at any point in space is given by 

r4

q
V

0
      --- 1.41 

Therefore 

120

1
21

r4

q
)P(V


     --- 1.49 

where r12 is the distance between q1 and q2, when they are at P1 and P2 respectively. 

Substituting equation 1.48 in 1.49, we have 

120

1
22

r4

q
qW


     ---1.50 

or     











12

1

0

22
r

q

4

1
qW     --- 1.51 

Then the work required to bring q3 is 

)P(VqW 32,133      --- 1.52 

Where V1,2 is the potential due to charges q1 and q2 at P3 

Therefore 































23

2

13

1

0

32,1
r

q

r

q

4

1
)P(V    --- 1.53 






























23

2

13

1

0

33
r

q

r

q

4

1
qW     --- 1.54 

Therefore the total work done to assemble the three charges is 

W = W1+W2+W3 
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








































23

2

13

1

0

3

12

1

0

22
r

q

r

q

4

1
q

r

q

4

1
qW  



































23

32

013

31

012

21

0

2
r

qq

4

1

r

qq

4

1

r

qq

4

1
W  






































23

32

13

31

12

21

0

2
r

qq

r

qq

r

qq

4

1
W    --- 1.55 

In general  






























 


 ij

ji
n

ij
1j

n

1i0 r

qq

4

1
W     --- 1.56 

In equation 1.56, j>I indicates that not to count the same pair twice. 

An alternate way to accomplish this is, count each pair twice and divide then by 2. 






























 


 ij

ji
n

ij
1j

n

1i0 r

qq

8

1
W  


































 


 ij

ji

0

n

ij
1j

n

1i

i
r

qq

4

1
q

2

1
W    --- 1.57 

The term within the parenthesis represents the potential at Pi, i.e. the position of qi due to 

all charges.Thus 





n

1i

ii )P(Vq
2

1
W     --- 1.58 

The equation 1.58 represents the amount of energy stored in the configuration. 

For a continuous charge distribution, we have for a volume v. Therefore the total 

charge can be represented by  

 
Volume

dq      --- 1.59 

If V is the potential at the potential at the point occupied by the charge ρdτ, the electric 

potential energy of such a distribution is 

 
Volume

dV
2

1
W     ---1.60 

From differential form of Gauss law, we have 
















0

1
E     ---1.61 
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or             E0                  --- 1.62 

Putting equation 1.62 in equation 1.60 

  
Volume

0 dVE
2

1
W  

  



Volume

0 dVE
2

W    --- 1.63 

From the vector product rule, we have 

)V(E)E(V)EV(   

)V(E)EV(V)E(   

But E=-V, hence 

)E(E)EV(V)E(   

2E)EV(V)E(      --- 1.64 

Putting equation 1.64 in 1.63, we obtain 

  



Volume

20 dE)EV(
2

W  












  dEd)EV(

2
W

Volume

2

Volume

0  

By applying the divergence theorem to the first integral, we get  

  
VolumeVolume

dsEVd)EV(  

Thus the total work done is 












  dEds)EV(

2
W

Volume

2

Volume

0    --- 1.65 

Since the potential
2

2
rdssurfaceand

r

1
Efield,

r

1
V  , then the product                    

EV.ds = 
r

1
r

r

1

r

1 2

2
 . Thus if we pick larger and larger volumes, then the surface integral 

 
Volume

ds)EV( becomes vanishingly small (because r becomes larger). Therefore the first 

term in equation 1.65 can be neglected and in particular the integration is taken over all 

space. Therefore 




  dE
2

W
SpaceAll

20     --- 1.66 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

26 
 

1.12 Electrostatics Uniqueness Theorems  

The boundary value problem can be solved by number of methods such as 

analytical, graphical, experimental, etc. Thus there is a question that, is the solution of 

Laplace‟s equation solved by any method, unique? The answer to this question is the 

uniqueness theorem.  

Statement: Any solution to Laplace‟s or Poisson‟s equation which also satisfies 

the boundary condition must be the only solution that exists. It gives the uniqueness of the 

solution. 

Consider a volume V surrounded by a surface S having charge density ρ. Let V1 

ad V2 be the two potentials satisfying Poisson‟s equations as 









 2

2

1

2 VandV    --- 1.67 

Equation 1.67 suggest the formation of a difference potential as and it satisfies the 

Laplace‟s equation as 

0Vand0V 2

2

1

2      --- 1.68 

Assume that V1 and V2 are also the two solutions of Laplace‟s equation. Both are the 

function of the coordinates of the system used.  These solutions must satisfy Laplace‟s 

equation. 

At the boundary, the potentials at different points are same due to equipotential surface. 

Then 

V1 = V2     --- 1.69 

Let V0 be the difference between the solutions. Hence 

021 VVV                  --- 1.70 

Using Laplace‟s equation for the difference V0, we have 

0)VV(V 21

2

0

2      --- 1.71 

0VV 2

2

1

2       --- 1.72 

At the boundary V0 = 0 (Using equations 1.69 and 1.70) 

From Gauss divergence theorem, we have 

          

   
SurfaceVolume

dsAdA     --- 1.73 

Let A= V0V0 and from vector algebra 

      fff  
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Put α = V0 and V0 = f. Hence we have 

     000000 VVVVVV   

But      · = 
2
 

Therefore       000

2

000 VVVVVV               --- 1.74 

Using equation 1.71, we write 

    0000000 VVVV0VVV   

    0000 VVAVV              --- 1.75 

Using equation 1.75, 1.73 can be written as 

    
Surface

00

Volume

00 dsVVdVV

  

--- 1.76

 

    
Surface

00

Volume

00 dsVVdVV

 

--- 1.77 

Since V0 = 0 at the boundary, the right hand side of equation 1.77 is zero. 

  0dVV
Volume

00   

This is the volume integral to be evaluated on the volume enclosed by the boundary. It is 

well know that 
2

YYY  . 

0dV
Volume

2

0      as V0 is a vector 

The integration can be zero under two conditions 

(i) The quantity under integral sign is zero. 

(ii) The quantity is positive in some regions and negative in some regions by equal 

amount and hence zero. 

 But square term cannot be negative in any region hence, quantity under integral 

must be zero. 

0V
2

0   

0V
2

0   

As the gradient of V0= V1 – V2 = 0 means V1 – V2 is constant and not changing with any 

coordinates. But at the boundary, it can be proved that V1 – V2 = constant = 0. Therefore 

V1 = V2 

This proves that both the solutions are equal and can not be different. 
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 Thus the uniqueness theorem can be stated that if the solution of Laplace‟s 

equation satisfies the boundary condition then the solution is uniqueirrespective of the 

method it is obtained.Also the solution of Laplace‟s equation provides the field which is 

unique, satisfying the same boundary conditions in a given region. 
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UNIT II - MAGNETOSTATICS 

Lorentz force – Faraday‟s law – Magnetic field strength and Ampere‟s circuital law – 

Biot-Savart‟s law – Ampere‟s force law – Magnetic vector potential – Equation of 

continuity – The far magnetic field of a current distribution – Magnetic field due to 

volume distribution of current.  

2.1. Introduction 

 The electrostatics field exist due to charges at rest. The magnetic field exists due 

to a permanent magnet, motion of charges or current elements. 

 When the charges are in motion, they are surrounded by a magnetic field. The 

flow of charges constitutes an electric current. Thus a current carrying conductor is 

always surrounded by a magnetic field. If a current flow is steady then the magnetic field 

produced is also a steady magnetic field. The direct current (d.c.) is a steady flow of 

current hence the magnetic field produced by a conductor carrying d.c. current is a steady 

magnetic field. The study of steady magnetic field produced due to the flow of direct 

current through a conductor is called “magnetostatics”. 

2.2 Lorentz force 

 In a given magnetic field, the magnitude of the force on a charge is proportional to 

the magnitude of the charge Q and to the speed v of the charge. It has also been found to 

be proportional to the sine of the angle between the velocity v and the magnetic field 

induction B. 

 Therefore 

 BvQFMagnetic 
   

--- 2.1 

               
 BvQKFMagnetic   

In S.I. units, K=1, hence 

 BvQFMagnetic      --- 2.2 

The force experienced by a charge Q in an electric field, E, is  

EQFElectric  

If both electric and magnetic fields are present in a region, then the force experienced by 

a charge Q moving with a velocity v is given by the sum of the electric and magnetic 

forces i.e.  

     ElectricMagneticTotal FFFF                 --- 2.3 
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  QEBvQF   

           EBvQF      --- 2.4 

or       BvEQF      --- 2.5 

This force is known as Lorentz‟s force law or Lorentz‟s force equation and the force 

given by it is known as the Lorentz‟s force. 

2.3 Faraday’s law 

 The space around a magnet yields the magnetic field B. The total magnetic lines 

of force across a given area is called the magnetic flux ϕ. When a magnet is introduced 

into the coil, each turn of the coil cuts the flux lines. The rate of cutting these lines i.e. 

(dϕ/dt) depends on the speed of introducing the magnet. If the coil and the magnet are at 

rest then (dϕ/dt) = 0, even though the magnetic lines are linked with the coil. According 

to Faraday, the magnitude of induced emf in a coil is equal to (dϕ/dt). 

 It is an experimental observation that an emf appears in a circuit when the 

magnetic flux through the circuit changes from any cause. Whenever the magnetic flux 

linked through a closed conductor is changed, an emf is induced in the conductor. The 

magnitude of this induced emf is equal to the negative time rate of change of magnetic 

flux through the circuit. i.e. 

dt

d
e


  

The emf induced in a loop of wire moving in the presence of a magnetic field is given by 

the flux rule. 

    dt

d
e


      --- 2.6 

In this case the magnetic force sets up the emf when the stationary loop moves in 

the magnetic field. Keeping the loop as stationary and if the magnet is moved then the 

magnetic flux in the neighbourhood of the loop is changed. This change in magnetic flux 

induces an electric field and the emf is the same as above. Thus, we can write 

dt

d
edlE




    
--- 2.7 

where E is the electric field. 

Equation 2.7 is Faraday‟s law in integral form. Stoke‟s theorem is used to convert it into 

differential form. 
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  dsEdlE
Surface

 
   

--- 2.8 

Comparing eqns. 2.7 and 2.8, we have 

 
dt

d
dsE

Surface


       --- 2.9 

According to Gauss‟s law, the total electric flux passing through the surface is equal to 

the surface integral of magnetic field density over the surface. 

 
Surface

dsB  

Substituting the value of ϕ in equation 2.9, we get 

   



SurfaceSurface

dB
dt

d

dt

d
dsE    --- 2.10 

   





SurfaceSurface

ds
t

B
dsE  

or             
t

B
E




                                                --- 2.11 

The above equation 2.11 relates the space derivatives of E at a particular point to the time 

rate of change of B at the same point. 

2.4 Magnetic field strength and Ampere circuital law 

Amagnetic field at any point is characterized by another physical quantity called 

intensity of the magnetic field (H). The quantitative measure of strongness or weakness of 

the magnetic field is given by the magnetic field intensity or magnetic field strength.    

The magnetic field strength at any point in the magnetic field is defined as the force 

experienced by a unit north pole of one weber strength, when placed at that point. 

Consider a current carrying wire as shown in Figure 2.1. Now it is possible to determine 

B at all points in a region about a long current carrying wire. 

 

Figure 2.1 
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For a homogenous medium, the amount of magnetization B due to a current 

carrying wire is (i) proportional to the permeability (µ) of the medium (i.e. B α µ),                   

(ii) proportional to the current I flowing (B α I) and (iii) inversely proportional to the 

distance r from the current carrying wire 









r

1
B . Therefore 

r

I
B


     --- 2.12 

Where µ = µr µ0 (µr =is the relative permeability) 

r

I
KB


     --- 2.13 


















2

1
K

r2

I
B      ---2.14 

In other words, the magnetic field intensity or strength of the magnetic field H at a point 

is defined as the ratio between the magnetic field B and the permeability of the 

surrounding medium. Thus  

 


B
H      --- 2.15 

The magnetic flux lines are measured in weber while magnetic field intensity is measured 

in Newton/weber or amperes/metre. It is a vector quantity. This is similar to the electric 

field intensity E in electrostatics. 

From equation 2.15 

HB       --- 2.16 

Equating equations 2.14 and 2.16 

H
r2

I





 

m/Amp
r2

I
H


     --- 2.17 

The line integral  

b

a

Magnetic dlHF  is defined as the magnetomotive force between the 

points a to b. 

For a circular path of radius r, we have L=2πr, hence  

 17.2equationgsinUIr2HLHdlHF

b

a

Magnetic    

This is the Ampere‟s work law or circuital law. 
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Statement: The line integral of the tangential component of magnetic field strength 

around a closed path is equal to the current enclosed by the path i.e. 

EnclosedIdlH      --- 2.18 

or     
EnclosedoIdlB      --- 2.19 

2.4.1 Applications of Ampere’s law 

(a) The magnetic field due to a long current carrying conductor 

 Let I be the current through the conductor of radius R. Consider an amperian loop 

of radius r as shown in Figure 2.2. The magnitude of B around an amperian loop of radius 

r is constant centred at the 

conductor. The lines of B are 

concentric circle and the direction 

is circumferential. 

 

  

 

 

 

 

 

 

 

Hence the field B at a point P which is at a distance r form the axis of wire (Figure 2.2) is 

given by Ampere‟s circuital law as 

   dsJdlB 0  

  Enclosed0IdlB                                           --- 2.20 

  0dlB [Current crossing the bounded surface] 

Special cases: 

Case (i) If r > R, The current crossing bounded surface is I. Then 

IIr2BdlBdlB 0Enclosed0    

Ir2B 0  

                 (a)                                    (b) 

Figure 2.2 
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r2

I
B 0




                                                          --- 2.21 

 

Case (ii) If r < R, the current crossing the bounded surface will be 

2

2
2

2

2

Ennclosed
R

r
Ir

R

I
rJI 










  

2

2

0
R

r
Ir2BdlBdlB    

r2

1

R

r
IB

2

2

0


  

2

0

R2

Ir
B




                                                       --- 2.22 

(b) The magnetic field due to a long solenoid 

 Consider a long solenoid consisting of N number of closely wound turns per unit 

length on a cylinder of radius R and carrying current I as shown in Figure 2.3a. 

 

 

 

 

 

 

 

 

 

 

 

 

To determine the value of B outside the solenoid, consider the amperian loop of radius r 

as shown in Figure 2.3b. Hence 

0Ir2BdlB Ennclosed0   

This is because the loop enclosed no current. Therefore the value of B outside the 

solenoid is zero. 

To determine the value of B inside the solenoid, consider the rectangular shaped 

amperian loop of height L which is half inside and half outside as shown in Figure 2.3c. 

 

 

 

 

 

(a)                        (b)                           (c) 

Figure 2.3 
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Now let us apply Ampere‟s law 
Ennclosed0IdlB  to the path „abcd‟ as in                  

Figure 2.3c.  

Here the total integral is the sum of four integrals one for each path of rectangle. 

i.e.  
a

b

b

c

c

d

d

a
abcd

dlBdlBdlBdlBdlB  

For the path ba, B and dl are perpendicular to each other and hence B·dl = 0 and 

similarly for dc, B·dl = 0. The path ad is outside the solenoid. Therefore B·dl = 0, because 

B is zero outside. 

The only contribution to the field is due to the path bc. Thus for entire path 

 
b

c
abcd

dlBdlB  

B and dl are parallel inside, hence 

 
b

c
abcd

dlBdlB  

But 
b

c
dl = length bc = L. Thus  

Ennclosed0

abcd

IBLdlB   

The net current EnnclosedI  passes through the area bounded by the path of integration is not 

the same as the current I in the solenoid because the path of integration encloses more 

than one turn. 

 Let N be the number of turns per unit length, then 

INLIEnnclosed   

INLIBLdlB 0Ennclosed0

abcd

  

INLBL 0  

         
INB 0                           --- 2.23 

(c) The magnetic field of a toroid coil 

Toroid is a solenoid bent around in the form of a closed ring (Figure 2.4). If N is 

the number of turns in the toroid and I is the current in each turn.  
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Now let us apply Ampere‟s law to a circle of radius r about the axis of toroid. Thus 

InIr2BdlB 0Enclosed0

abcd


 

Where n is the total number of turns in the toroid

 


















r2

n
I

r2

nI
B 0

0  

INB 0      
--- 2.24 

where 









r2

n
N


, the number of turns per unit length. The expression 2.24 is the same as 

for a long solenoid. The field outside the toroid coil is zero. 

2.5 Ampere’s Force law  

 Ampere observed that the force between the two current elements dl1 and dl2 

carrying currents I1 and I2 respectively and separated by a distance r depends upon the 

following facts 

(i) the force varies directly as the product of magnitude of currents 

(ii) the force varies inversely as the square of the distance between the two current 

elements 

(iii) the force depends upon the nature of the medium and 

(iv) the force depends upon the lengths and orientations of the two current elements.  

Figure 2.4 
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Consider the two current elements as shown in Figure 2.5. The force exerted on 

current element dl2 by the current element dl1 in free space is given by  

    r̂dldl
r

1
II

4
dF 12221

0

12 




















  --- 2.25 

Where r̂ represents the unit vector along the direction of r. 

 Since the conductor is made up of all such differential elements, then the 

expression for dF21 can be put in the form for the whole length of the conductors and is 

obtained by taking the integral of equation2.25. Therefore 

 
2

1122

21

0

12
r

r̂dlIdlI

4
F














     --- 2.26 

The equation 2.26 represents the force exerted on current I2 by current I1. The line 

integral is required to ensure that all the current elements are considered. This is because 

current can flow only in the closed path, provided by the circuit. 

The vectors dl1 and dl2 point in the direction of positive current flow. Force is 

measured in Newton, current in Ampere and length in metre. 

 In order to determine the direction of force, we first find the cross product dl1 × r̂

and then obtain the cross product of dl2 with dl1× r̂ . 

 In equation 2.26, we can take I1 and I2 outside the integrals, so that 

 
2

12

1 2

21
0

12
r

r̂dldl
II

4
F














      --- 2.27 

where integrals are taken around the two loops and the constant µ0 is called the 

permittivity of free space and its value is equal to 4π × 10-7 N/amp2. 

Figure 2.5 
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 Equation 2.27 is the Mathematical statement of Ampere‟s observations about 

forces between current carrying loops and is called Ampere‟s law of force. 

 Equation 2.27 can be written in a more practical form as 

 












 




 

1

2

1
1

0

2

2212
r

r̂dl
I

4
dlIF    --- 2.28 

21

2

2212 BdlIF       --- 2.29

 

where

 

 












 




 

1

2

1
1

0
21

r

r̂dl
I

4
B

   

--- 2.30 

can be considered to be the magnetic field of circuit 1 at the position of dl2 of circuit 2. 

The vector B is called the magnetic induction or the magnetic flux density and is 

expressed in Weber/metre
2
 or Tesla. 

 

2.6 Biot-Savart law 

Biot-Savart law states that the magnetic field intensity dH produced at a point P as 

shown in Figure 2.6, by the differential current element Idl is proportional to the product 

Idl and the sine of the angle β between the element and the line joining P to the element dl 

and is inversely proportional to the square of the distance r between P and the element. 

 

Figure 2.6 

 

That is     
2r

sinIdl
dH


      --- 2.31 

2r

sinIdl
KdH


  


























4

1
K

r

sinIdl

4

1
dH

2
  

2r4

sinIdl
dH




  
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More conveniently in vector form
2r4

r̂Idl
dH




      --- 2.32 

The magnetic field intensity at P due to the whole circuit is obtained by integrating dH. 

Hence 

 




2r4

r̂Idl
dH  

dl
r

r̂I

4

1
H

2



  

or      dl
r

r̂I

4
B

2

0







     --- 2.33 

From equation 2.33, it is evident that the magnetic field induction B at a position 

P due to current carrying element dl (Figure 2.4) will be equal to 

 






 






2

0

r

r̂dl
I

4
B

    

--- 2.34 

The equation 2.34 for B is called the Biot-Savart‟s law for line current. 

2.6.1 Biot-Savart’s Law for volume and surface currents 

 If the current I is distributed in space with a current density J amp/metre
2
, then 

dsJI   

  ddldsdldsJdlI   

dJdlI   

Hence the Biot-Savart‟s law for volume current is 

 














 d

r

r̂J

4
B

2

0              --- 2.35 

where the integration is carried out over any volume which includes all currents. 

The Biot-Savart‟s law for surface current is given by 

 






 




 ds

r

r̂K

4
B

2

0                                      --- 2.36 

2.6.2 Application of Biot-Savart’s law 

(i) The magnetic field B at a distance z above a long straight wire carrying a steady 

current I. 

Consider an infinitely long current carrying wire as shown in Figure 2.7. Our aim 

is to determine the magnetic field at a point P. 
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In Figure 2.7, we have   sindlr̂dl   

  90sindlr̂dl  

 cosdlr̂dl  

and   
z

l
tan   

 tanzl  




 d
cos

1
zdl

2
 

Also we have 
r

z
cos   

z

cos

r

1 
 and 

2

2

2 z

cos

r

1 
  

The field of any straight segment of wire in terms of the initial and final angles θ1 

and θ2 respectively for the Figure 2.7b is obtained from the equation 2.34. Thus 

                             
2

2

2

0

z

cos
cosd

cos

1
z

4

I
B

2

1







 




                    --- 2.37 





 




dcos

z4

I
B

2

1

0  

 12
0 sinsin

z4

I
B 




  

If the length of the wire is infinite one, then we have 
2

and
2

21





  

 

 

 

 

(a) (b) 

 

Figure 2.7 
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






 









2
sin

2
sin

z4

I
B 0  

  11
z4

I
B 0 




  

 2
z4

I
B 0






 

or     
z2

I
B 0




                                                        --- 2.38 

Thus the magnetic field at a distance z form the infinitely long wire is directly 

proportional to the amount of current flowing through the wire, the medium in which the 

experiment is carried out and inversely proportional to the distance of the point P. 

2.7 Magnetic vector potential 

 In electrostatics, the electric field intensity can be derived from the potential V by 

the relation .VE   Here we show that the magnetic induction B can be related to a 

quantity A by the relation AB  , where A is called the magnetic vector potential. 

 According to Biot-Savart‟s law the magnetic induction vector B for line current is 

given by 









2

0

r

rdl
I

4
B      

Also                                                     









r

1

r

r̂
2

 

Then we write 














  r

1
dlI

4
B 0

   

--- 2.39 

Idl
r

1

4
B 0 













   

dl
r

1
I

4
B 0 













 

    

--- 2.40 

But we know that      fAAffA   and putting dl for A and 
r

1
for f, we have 

  


















r

1
dldl

r

1
dl

r

1

   

--- 2.41 

  
















 dl

r

1
dl

r

1

r

1
dl
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  
















 dl

r

1
dl

r

1

r

1
dl

 

  
















 dl

r

1
dl

r

1
dl

r

1
 

 dl
r

1
dl

r

1
dl

r

1


















  

Now the equation 2.40 becomes as 

  





















 dl

r

1
dl

r

1
I

4
B o  

  












 dl

r

1
dl

r

1
I

4
B 0

 

But  dl =0, because dl does not depend on x,y,z. Thus 

 














r

dl
I

4
B 0

 

Interchanging the operators, we get

 














  r

dl

4

I
B 0

    

--- 2.42 













  r

dl

4

I
B 0

    

 

AB       --- 2.43

 

Where     



r

dl

4

I
A 0

     
--- 2.44 

and is called the magnetic vector potential. Therefore the magnetic field induction, B, is 

given by the curl of vector potential. 

Special cases: 

Case (i) It satisfies the Poisson‟s equation. 

If the current is distributed with a current density J, then I = J · da. Putting da·dl=dτ and 

I·dl = J da·dl = Jdτ. Integrating over the whole volume, we get from equation 2.44 





  d

r

J

4
A 0

     
--- 2.45 

Then  














  d

r

J

4
A 022
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












  d

r

J

4
A 202

 














  d

r

1
J

4
A 202

 














  d

r

1

4

J
A 202

 

This is because J is not a function of x, y, z. But  4d
r

12 







 . 

 



 4J

4
A 02

 

JA 0

2 
     

--- 2.46 

Case (ii) The line integral of magnetic vector A around a closed path gives the magnetic 

flux linked with the area enclosed by the closed path. i.e. 

  dlAB      
--- 2.47 

By definition, we have   daAdsBB     

But according to Stoke‟s theorem, we have 

    dlAdaA
S

 

  dlAB  

Case (iii) The divergence of magnetic vector potential A is zero or a scalar constant. 

By Definition, we have AB   

Then  

AB   

  AAB 2  

But JB 0  and JA 0

2   

Therefore  

   JAJ 00   

   JAJ 00   

   JJA 00   

  0A       --- 2.48 

This means that the divergence of A is zero i.e. 0A   
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2.8 The far magnetic field of a current distribution 

 The concept of magnetic vector potential (i.e. equation 2.44) is valid only for any 

observation point. But if the observation point is far away from the source potential 

responsible for current distribution, then approximation is required for practical condition. 

Consider a current carrying loop of wire as shown in Figure 2.8. 

 

 

 

 

 

 

 

 

 

 

For a given current distribution as shown in Figure 2.8, the vector potential of a current 

loop is given by 





R

dl

4

I
A 0      --- 2.49 

The point P and the current element dl are at a distances of r and r
1
 respectively from the 

origin O and θ is the angle between r and r
1
. 

 From the Figure 2.8, we have  
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Figure 2.8 
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  
































2

1

2

1

2

1

2

1
2

11

r

r

r

r.r2
1

r

1
)rr(

2

 

2

1

2

1

2

1
11

r

r

r

cosrr2
1

r

1
)rr(

2 

















  

2

1

2
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r

r

r

cosr2
1

r

1
)rr(

2 

















  

2

1

2

11
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r

r

r

cosr2
1

r

1
)rr(

R

1
2 

















  

 
r

r
ZwithZcosZ21

r

1

R

1 1

2

1
2 


 

As we know that   2

1
2ZcosZ21


 is the generating function of Legendre polynomial 

so that 

  







0n

n

n
2

1
2 ZcosPZcosZ21  

Therefore 






 
0n

n

n

11 ZcosP
r

1
)rr(

R

1
 






 









0n

n

n
1

11 cosP
r

r

r

1
)rr(

R

1
   -- 2.50 

From equation 2.49, we have 

dl
R

1
I

4
A 0




  

dlcosP
r

r

r

1
I

4
A

0n

n

n
1

0

 
























  

dlcosP
r

r

r

1
I

4
A n

n
1

0n

0 



















 





 

  dlcosPr
r

1

r

1
I

4
A n

n1

n
0n

0 











 




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  dlcosPr
r

1
I

4
A n

n1

1n
0n

0 



  





 

    












  .....dlcosPr

r

1
dlcosPr

r

1
dlcosP

r

1
I

4
A 2

21

31

1

20
0  

But the Legendre function 

  P0 cos θ = 1 

P1 cos θ = cos θ  

P2 cos θ =  1cos3
2

1 2   and so on. 

Thus we get 

      












  .....dl1cos3

2

1
r

r

1
dlcosr

r

1
dl1

r

1
I

4
A 221

3

1

2

0 ---2.51 

In equation 2.51, the first term is the monopole term, the second term is the dipole term 

the third term is the quadrupole term and so on. But the magnetic monopole term is zero. 

i.e.   0dl . This results that there is no magnetic monopole term in nature i.e. ·B=0. In 

the absence of monopole contribution, the dominant term is the dipole alone. Hence we 

have 

  












  dlcosr

r

1
0

r

1
I

4
)r(A 1

2

0

Dipole  

 dlcosr
r4

I
)r(A 1

2

0

Dipole 



   

2.9 Magnetic force due to Volume distribution of current 

Line current: 

 Generally the current in a wire is the amount of charge passing a given point per 

unit time. Almost in all phenomena involving moving charges the current is defined as 

the product of charge times velocity. The current is measured in Coulomb per second or 

Amperes. 

ondsec1

Coulomb1
Ampere1   

 

 

 

 
Figure 2.9a 
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Consider a line charge λ moving through a wire with a velocity v as shown in Figure 2.9a, 

which constitutes a current I. 

vI        --- 2.52 

In Figure 2.8a, a segment of length v∆t, carrying charge λv∆t, passes through any point in 

a time interval ∆t results current I 









 tvQ,tvdlbut,lQor

l

Q


 

---  2.53 

where λ is the charge density which refers only to the moving charges. The magnetic 

force on a segment of current-carrying wire is obtained by using Lorentz force law. i.e.  

   BvdlFMagnetic      
--- 2.54 

 
  dlBIFMagnetic 

    
--- 2.55 

Since I, v and dl point in the same direction, the equation 2.55 can be written as 

 BdlIFMagnetic       --- 2.56 

But along the length of the wire, the current is constant in magnitude. Hence 

 BdlIFMagnetic      
--- 2.57 

Surface current: 

When charge flows over a surface, it is described by the surface current density K.  

 Consider the ribbon of infinitesimal width dl running parallel to the flow shown 

in Figure 2.8b. 

 

 

 

  

 

If the current in the ribbon is dI, then the surface current density K is given by 




dl

dI
K              --- 2.58 

If the surface charge density is σ and its velocity is v, then 

         K = σv     --- 2.59 

Figure 2.9b 
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where K is also called as the current per unit length, perpendicular to flow. Let dl be 

the net line charge on the ribbon and hence,   vdldI  . Thus the magnetic force on a 

surface current is 

   BvdaFMagnetic    

  daBKFMagnetic  
   

--- 2.60 

Volume current: 

 If the flow of charge is distributed through a dimensional region, then it is 

described by the volume current density J. 

 Let us consider a tube of infinitesimal cross section da moving parallel to the 

flow as in Figure 2.8c. 

 

 

 

  

 

 

If dI is the current in the tube, then the volume current density is given by 




da

dI
J

    

--- 2.61 

where J is the current per unit area-perpendicular to flow. 

 If the volume charge density is ρ and the velocity is v, then 

J = ρv      --- 2.62 

Therefore the magnetic force on a volume current is given by 

   BvdFMagnetic  
 

    dBvFMagnetic  

or        dBJFMagnetic

    
--- 2.63 

2.10 Continuity equation 

 The current crossing a surface of area is given by 

 58.2equationgsinudaJI
Surface

   

Figure 2.9c 
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or      
Surface

daJI

     

--- 2.64 

The total charge leaving a volume „V‟ per unit time is 

    dJdaJ
VolumeSurface

 

 Consider a closed surface „S‟ enclosing a volume V. If ρ is the volume charge 

density, then the total charge within the volume is  
V

d . But the transport of charge 

constitute the current, thus 

 
Volume

d
dt

d

dt

dq
I

    

--- 2.65 

 Since the electric charge can neither be created nor destroyed (i.e. the charge is 

conserved), the flow of the charge out of the volume must be equal to the rate of decrease 

of the total charge inside the volume. Therefore  

 
VolumeSurface

d
dt

d
daJ

   

--- 2.66 

 The minus sign indicates that an outward flow decreases the charges left in V. 

Since ρ is changing with time, we can write 





  d

t
d

dt

d

VolumeVolume    

--- 2.67 

So that the equation 2.66 becomes 













  d

t
daJ

Volume    

--- 2.68 

 Here the time derivative becomes the partial derivative with respect to time when 

it is moved inside the integral. 

 On transforming the surface integral into a volume integral by divergence 

theorem, we have 

    dJdaJ
Surface V   

           --- 2.69 

Comparing equations 2.68 and 2.69, we obtain   

  











  d

t
VolumedJ

VVolume    

--- 2.70 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

50 
 

  0d
t

dJ
VolumeVolume













   

or      0d
t

J
Volume Volume





















 

   

--- 2.71 

 This integral must be zero for any orbitrary volume V. Hence the integration must 

vanish identically. i.e., 

  0
t

J 














 

or       0
t

J 















    

--- 2.72 

 This is known as continuity equation. It is based on the law of conservation of 

charge. 

 In the steady state 

0
t













 

0J   

This equation is valid only in the region which does not contain a source. 
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UNIT III : DIELECTRICS 

Polarization – The electric field inside a dielectric medium – Gauss law in dielectric and 

the electric displacement – Electric susceptibility and dielectric constant – Boundary 

conditions on the field vectors – Dielectric sphere in a uniform electric field- Force on a 

point charge embedded in a dielectric  

3.1 Introduction 

 In conductors there are large numbers of electrons which are free to move about 

through the material. Generally many of the electrons are not associated with any 

particular nucleus but roaming around the material. By contrast, all charges are attached 

to specific atoms or molecules and they can move only inside the molecule in insulators. 

Such microscopic displacements are not as intense as the whole arrangement of charge in 

a conductor. However, the collective effect is responsible for the characteristic behaviour 

of dielectric materials. 

Certain materials exhibit the property that their electrons are not free to move 

under the influence of an electric field. Such materials are called as insulators. However, 

the application of the electric field may change the behaviour of an insulator. Thus the 

insulators whose behaviour gets modified in an electric field are called dielectrics. 

 When the change in behaviour of the dielectric material is independent of the 

direction of the applied field, the dielectric is called as isotropic. On the other hand if the 

change in behaviour of the dielectric depends on the direction of applied field is called as 

anisotropic. 

 There are two principal mechanisms by which electric fields can distort the charge 

distribution of a dielectric atom or molecule viz. stretching and rotating. 

The various properties of dielectric materials are summarised as follows. 

(i) When a dielectric is subjected to an external field E, the bound charges shift their 

relative positions. Due to this displacement, small electric dipoles get induced the 

dielectric. This is called „Polarization‟. 

(ii) Due to the polarization, the dielectric stores energy. 

(iii) Due to the polarization, the flux density of the dielectric increases by an amount 

equal to the polarization. 

(iv) The induced dipoles produce their own electric field and align themselves in the 

direction of the applied electric field. 
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(v) The electric field outside and inside the dielectric gets modified due to the induced 

electric dipoles. 

3.2 Polarization 

 When a piece of dielectric material (polar or nonpolar) is placed in an electric 

field, tiny dipole moment will be induced by induction in it. Then these elementary 

dipoles are oriented along the direction of field and the dielectric is said to be polarized.  

In the absence of an electric field, the atom is in a position of stable equilibrium. 

This is because the centre of gravity of its positive charge coincides with that of the 

negative charge (Figure 3.1a).  

Consider a dielectric material in an electric field. The electric field will exert a 

force on each charged particle. The field will push the positively charged nucleus in the 

direction of the field and the negatively charged electron cloud in the direction opposite to 

that of field (Figure 3.1b). The equivalent dipole formed is shown in Figure 3.1c.                   

As a result, the positive and negative parts of each atom or molecule are displaced from 

their equilibrium position in an opposite direction. One important point to be noted is that 

induced effect is present only when the electric field is present. 

 

 

  

 

 

 

 

 

 

 

 

 

In nonpolar molecules, the dipole arrangement is totally absent, in the absence of 

electric field E. It results only when an externally field E is applied to it. In polar 

molecules, the permanent displacements between centres of positive and negative charges 

exist. Thus dipole arrangements exist without application of E. But these dipoles are 

randomly oriented. Under the application of applied electric field E, the dipoles 

(a) (b) 

 

 

 

 

 

(c) 

Figure 3.1 
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experience torque and they align with the direction of the applied field E. This is called 

polarization of polar molecules. 

The amount of dipole moment induced will be directly proportional to the field 

because larger field will displace the charges more than the smaller field. “The induce 

dipole moment per unit volume is called the polarization of the medium” and is 

represented by P. 

A convenient measure of this effect is 

volumeUnit

momentDipole
P   

 Experimentally it has been found that the induced dipole moment P is 

approximately proportional to the applied electric field E. Therefore 

P α E         ---3.1 

or     P = α E        ---3.2 

where α is the constant of proportionality and is known as the “atomic polarizability”. 

3.3 The electric field inside a dielectric medium 

 In free space, the electric field is defined as the force per unit charge. This implies 

that the electric field in free space is a measurable quantity. However, to measure the 

electric field inside a dielectric or other material medium may be very difficult or 

impractical but, if we confine our attention to the external effects of the dielectric, such 

internal measurements became unnecessary provided that a theory can be formulated for 

the behaviour of the dielectric which produces agreement with external measurements. 

Thus, a distinction should be made between an electrical field as a measurable quantity 

(as in free space) and an electric filed as a theoretical quantity (as in dielectric).  

3.4 Gauss law in dielectric medium and the electric displacement 

 The total charge density within the dielectric can be written as 

fb       --- 3.3 

From Gauss‟s law, we have 

0

E



  

or      fb0 E      --- 3.4 

But the effect of polarization is to produce accumulation of bound charge. The bound 

charge density is 

Pb       --- 3.5 
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Hence, the equation 3.4 becomes 

  f0 PE   

  f0 PE   

  f0 PE 
    

--- 3.6 

The term within the parenthesis is designated by D. Thus the equation 3.6 becomes 

fD 
     

--- 3.7 

Where D =  PE0   is known as the electric displacement.  

The equation 3.7 gives Gauss law in terms of D. In an integral form  

Enclosedf

Surface

QdaD   

where 
EnclosedfQ  represents the total free charges enclosed within the volume. 

3.5 Electric susceptibility and dielectric constant 

 The polarization of a dielectric results from an electric field, which aligns the 

atomic or molecular dipoles. In many substances the polarization is proportional to the 

filed E. Thus  

P α E  

or     EP e0        --- 3.8 

The equation 3.8 is valid only if the field is not too strong. The constant of 

proportionality χeis called the “electric susceptibility” of the medium. The material which 

obeys the equation 3.8 is called linear dielectrics. 

In linear media, the electric displacement D is given by 

 PED 0 
    

--- 3.9 

Substituting equation 3.8 in 3.9, we have 

 EED e00   

 e0 1ED   

Thus D is also proportional to E. Therefore 

ED   

where  e0 1  is called the permittivity of the material of the dielectric. 

In vacuum, there is no matter to polarize. Hence the susceptibility is zero, but the 

permittivity is ε0 and is known as the permittivity of free space. 

Therefore the permittivity of a dielectric relative to free space is given by 
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 e

0

r 1 





    

--- 3.10 

Where εr is called the relative permittivity or dielectric constant or specific inductive 

capacity and is designated by K. Thus 

     
 e1K       --- 3.11 

The volume bound charge density is given by (Using equation 3.5) 

Pb   

Substituting equation 3.8, we get 

 Ee0b   

But ED  and therefore 



D

E  





















D
e0b  













 De

0b  

 











 e

0b D  

But fD  , hence   











 e

0fb

 

 
 





































e

0
e

0e

e
fb

1

1
or1

1
  --- 3.12 

Therefore the volume bound charge density is proportional to the density of free charge. 

3.6 Boundary conditions on the field vectors 

 When an electric field or magnetic field passes from one medium to another 

medium, it is important to study the conditions at the boundary between two media. The 

conditions existing at the boundary of the two media when field passes from medium to 

another are called boundary conditions. 

Now let us consider the boundary between two perfect dielectrics. The 

permitivities of the two are ε1 and ε2 respectively. The interface is shown in Figure 3.3.  

The E and D have to be determined by solving each into two components viz. 

tangential to the boundary and normal to the surface. 

Now consider a closed path abcda rectangular in shape as shown in Figure 3.3.     

∆h and ∆w be the height and width of the shape respectively. It is placed in such a way 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

56 
 

that the half of the shape i.e. ∆h/2 in dielectric medium 1 while the remaining is in 

dielectric medium 2. 

Let us calculate 

E·dl along the path.  

 

 

 

 

 

 

 

 

Therefore 

  0dlE      ---3.13 

Hence                                0dlEdlEdlEdlE

a

d

d

c

c

b

b

a

     ---3.14 

Now                                                      


 111 EEE
ll

 

 and      
 222 EEE

ll
 

The electric fields E1 and E2have both the parallel and normal components in the 

respective dielectrics. 

When 

a

d

c

b

and,0h  become zero as they are line integrals along ∆h. Hence equation 

3.14 reduces to 

0dlEdlE

d

c

b

a

      --- 3.15 

Now a-b is in dielectric medium 1 hence the corresponding component of E is ll1E as a-b 

is parallel to the surface. Therefore 

wEdlEdlE
llll 1

b

a

1

b

a

      --- 3.16 

 
 

     Figure 3.3 
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While c-d is in dielectric medium 2 and hence the corresponding component of E is 
ll

2E

as c-d direction is also parallel to the surface. But the direction of c-d is opposite to a-b 

hence corresponding integral is negative of the integral obtained for path a-b 

wEdlEdlE
llll 2

d

c

2

d

c

 
    

--- 3.17 

Substituting equations 3.16 and 3.17 in 3.15, we obtain 

0wEwE
llll 21   

or    wEwE
llll 21      --- 3.18 

Thus the parallel components of electric field intensity at the boundary in both the 

dielectric remains same. i.e. Electric field intensity is continuous across the boundary. 

The relation between the electric field and the electric displacement is D = εE. Hence if 

ll2ll1 DandD   are the magnitudes of the parallel components of D in dielectric 

medium 1 and 2 respectively then, 

llllllll 222111 EDandED 

   

--- 3.19 

or     
llll

ll

ll

21

2

1

2

1
EE

D

D





 

    

--- 3.20 

Thus the parallel components of D undergo some changes across the interface hence 

parallel D is said to be discontinuous across the boundary. 

 Gauss‟s theorem can be used to determine the normal components. For this 

consider a Gaussian surface in the form of circular cylinder, placed in such a way that the 

half of it lies in dielectric medium 1 while the remaining half in dielectric medium 2 as 

shown in Figure 3.3. When the height ∆h0 the flux leaving from its lateral surface 

becomes zero. The surface area of its top and bottom of the cylinder is ∆s. 

  QdsD  

QdsD
Top Bottom Latertal













  

    

---3.21 

But     0has0dsD
Lateral











   

--- 3.22 
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Therefore                                 QdsDdsD
Top Bottom













 

    

--- 3.23 

The flux leaving out normal to the boundary is normal to the top and bottom 

surfaces. Hence,


 1DD for dielectric medium 1 and 
2D for dielectric medium 2.      

Since the top and bottom surfaces are elementary, flux density can be assumed constant 

and can be taken out of integration. Therefore 

sDdsDdsD 1

TopTop

1 
 

   

 --- 3.24 

For top surface, the direction of D is entering the boundary while for bottom surface, the 

direction of D is leaving out the boundary. Both the components are in an opposite 

direction at the boundary. 

    

sDdsDdsD 2

BottomBottom

2 
 

   

--- 3.25 

Using equations 3.24 and 3.25, 3.23 can be written as 

QsDsD 21 


    --- 3.26 

But the surface charge density sQor
s

Q



 . 

Therefore                                            


sDsD 21     --- 3.27 

Since no free charge is available in perfect dielectric medium, the available charge 

on the surface is zero. It means all charges in dielectric are bound charges and are not 

free. Hence at the dielectric media boundary the surface charge density σ can be assumed 

zero. i.e. σ = 0. Therefore 

0sDsD 21 
      ---3.28 

or     sDsD 21 
  


 21 DD  

Hence, the normal component of flux density D is continuous at the boundary between 

two perfect dielectric media. 


 222111 EDandED  

1
E

E

D

D

22

11

2

1













     ---3.29 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

59 
 

1

2

2

1

E

E








      ---3.30 

Thus the normal components of the electric field intensity E are inversely proportional to 

the relative permitivities of the two dielectric media. 

 

3.7 Dielectric sphere in a uniform electric field 

 Consider a metal sphere of radius a carrying charge Q as shown in Figure 3.4.      

It is surrounded by a linear dielectric sphere of radius b. The permittivity of the dielectric 

is ε. The potential at the centre can be computed as follows. 

To calculate V, we should know E. The electric field E at any point P which is at a 

distance r from the charged dielectric is given by 

r̂
r4

Q
E

2
                                                    --- 3.31 

 

 

 

 

 

  

 

 

But D = εE, hence 

r̂
r4

Q
D

2
 for all points r > a 

Once r is known, it is very simple to calculate E. Therefore 

   
r̂

r4

Q
E

2


     
for a < r < b 

 

            

r̂
r4

Q
E

2

0


     

for r > b 

Therefore the potential at the centre is 

  dr0dr
r4

Q
dr

r4

Q
dlEV

0

a

a

b

2

0

0 b

2

0

  






















 

 



















b

1

a

1

b

1

4

Q
V

0

                                          --- 3.32 

Figure 3.4 
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The polarization P of the dielectric is given by 

r̂
r4

Q
EP

2

e0
e0






 

While
 

surfaceoutertheat
b4

Q
n̂P

2

e0
b






 
 

surfaceinnertheat
a4

Q
n̂P

2

0

e0
b




  

 

3.8 Force on a point charge embedded in a dielectric  

 Consider a slab of dielectric material, partially inserted between the plates of a 

parallel plate capacitor as shown in Figure 3.5a. The field is uniform inside a parallel plat 

capacitor and zero outside. However, there is a fringing field around the edges              

(Figure 3.5 b) . It is not easy to determine this fringing filed and this difficulty can be 

avoided by adopting the following method.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 3.5 
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Let W be the energy of the system. It purely depends upon the overlap distance s. 

If we pull the dielectric out an infinitesimal distance s towards right, the energy is 

changed by an amount equal to the amount of work done.  

     
dsFdW us      --- 3.34 

where Fus is the force we exert on dielectrics. 

We pull out hardly to overcome the electrical force F on the dielectric. 

FFus   

Thus the electrical force on the dielectric slab is  

ds

dW
F       --- 3.35 

The energy stored in the capacitor is 

 

2CV
2

1
W       --- 3.36 

In this case the capacitance is given by 

 sw
d

a
C e

0 


     --- 3.37 

 

where w is the length of the plates. As the dielectric moves, the potential will change and 

the total charge on the plate is constant. i.e. Q = CV. By using equation 3.36 the energy 

stored in the capacitor in terms of Q is given by 

    








 V

C

Q

C

Q

2

1

C

VC

2

1
W

222


   

--- 3.38 

Hence, the force F is given by 

ds

dC

C

Q

2

1

ds

dW
F

2

2

  

ds

dC
V

2

1
F 2

    

--- 3.39 

From equation 3.37, we get 

     
d

a

ds

dC e0      --- 3.40 

Hence the equation 3.39 becomes 

d

a
V

2

1
F e02 
  

d

a
V

2

1
F e0

2      --- 3.41 
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In computing the force, it is common error to use equation 3.36 with potential V as 

constant rather than equation 3.38 with charge Q as constant. So one can obtain in general 

d

a
V

2

1
F e0

2      --- 3.42 

and this is off by sign. Then it is also possible to maintain the capacitor at a fixed 

potential by connecting it with a battery. In that case the battery also does the work as the 

dielectric moves. Thus instead of equation 3.34, we can have 

dQVdsFdW us 
     

--- 3.43 

where V dQ is the total work done by the battery. Then it follows that 

ds

dQ
V

ds

dW
F   

ds

dCV
V

ds

dC
V

2

1
F 2   

ds

dC
V

ds

dC
V

2

1
F 22   

ds

dC
V

2

1
F 2

     
--- 3.44 

This is the same as equation 3.39 with the correct sign. Therefore we conclude 

that the force on the dielectric is not dependent whether we keep Q or V as constant. It is 

purely determined by the distribution of charge. Thus it is very easy to calculate the force 

F by assuming the charge Q as constant and also not bother about whether work is done 

by the battery or not. 
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UNIT IV : MAXWELL’S EQUATION AND PROPAGATION OF EM WAVES 

Maxwell‟s equations and their physical significance–Plane wave equation in 

homogeneous medium and in free space – Relation between E and H vectors in a uniform 

plane wave–The wave equation for a conducting medium –Skin depth – Wave 

propagation in dielectric– Poynting vector – Poynting‟s theorem.  

4.1 Maxwell’s equations and their physical significance 

 James Clerk Maxwell introduced a concept that the magnetic field is produced by 

a changing electric field. The time varying fields are involved in the experiments of 

Faraday and the theoretical analysis was done by Maxwell. Maxwell derived four 

equations to describe the electromagnetic field. These four equations are known as 

„Maxwell‟s equations‟. These equations are derived from Gauss‟s law, Faraday‟s law, 

Ampere‟s circuital law for electric field and Gauss‟s law for magnetic field. Each of the 

differential equations has its integral form as counterpart. One form of equation may be 

derived from the other by using either „Stokes theorem‟ or „Divergence theorem‟. 

Maxwell‟s equations can be derived as follows. 

Maxwell’s equation - I 

Ampere’s circuital law: 

 Ampere‟s law states that the line integral of magnetic field intensity around any 

closed path is equal to the current enclosed by the path. 

 
Line

EnclosedIdlH

    

--- 4.1 

Replacing current by the surface integral of conduction current density J over an area 

bounded by the path of integration of H, we get 

  
Line Surface

dsJdlH                                           --- 4.2 

 In general the total current density involves both conduction current density (Jc) 

and displacement current density (Jd). 

)J(J)J(JJ DntDisplacemeCConduction 
   

--- 4.3 

Conduction current density Jc: 

According to Ohm‟s law, the conduction current through a resistor R is given by 

A

l
Rbut,

R

V
IC


  

where l is the length, A is the area of cross section and ρ is the resistivity of the 

conductor.  
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The conductivity of the material of the conductor is given by 



1

. Therefore 

A

l
R


  

and hence the conduction current,     
l

AV
IC


  

If E is the electric field, then the voltage V = El. Hence 

E
A

I
or

AE
l

AEl
I

C

C








 

But the conduction current density, 
A

I
J C

C   , Hence  

EJC     --- 4.4 

Displacement current density Jc: 

The displacement current through a capacitor is defined as the rate of flow of charge. i.e. 

,CVQbut
dt

dQ
ID 

 

Hence    
 

dt

dV
CIor

dt

CVd
I DD   

But the capacitance of a parallel plate capacitor is  

d

A
C


  

where ε is the permittivity of the medium, A is the area of the parallel plate capacitor and 

d is the distance between the plates. Then the displacement current ID is  

,
dt

dV

d

A
ID




 

   EdV,
dt

Edd

d

A
ID 


   

dt

dE
d

d

A
ID


 or 

dt

dE
AID   

dt

dE

A

ID 
 

But 
 
dt

Ed

dt

dE

A

I
JandED D

D



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Hence 

     
 ED

dt

dD
JD  

    
--- 4.5 

Substituting equations 4.4 and 4.5 in 4.3, we get 

dt

dD
EJ 

     
--- 4.6 

Now Ampere‟s law can be written as 

   
Line Surface

DC dsJJdlH                                        --- 4.7 

  









Line Surface

C ds
dt

dD
JdlHor  

Unless or otherwise it is not specified by J stands for conduction current density alone, 

then we can write 

  









Line Surface

ds
dt

dD
JdlH

    

--- 4.8 

 
 EDandEJds

dt

Ed
EdlH

Line Surface








 
    

       or   









Line Surface

ds
dt

dE
EdlH      --- 4.9 

The equation 4.8 is known as integral form of Maxwell‟s first equation. 

Physical significance:The magnetomotive force around a closed path is equal to the 

conduction current plus displacement current through any surface bounded by the path. 

The differential form of Maxwell‟s first equation can be obtained by applying 

Stoke‟s theorem to equation 4.8.  

         

   
Line Surface

dsHdlH                                  --- 4.10 

Comparing equations 4.8 and 4.10, we obtain 

           

   









SurfaceSurface

ds
dt

dD
JdsH

             

--- 4.11 

    

  









dt

dD
JHor

    

--- 4.12 

The equation 4.11 can also be written as 

        

   









SurfaceSurface

ds
dt

dE
EdsH                        --- 4.13 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

66 
 

or       









dt

dE
EH

    

--- 4.14 

This is known as differential form of Maxwell‟s first equation. 

Maxwell’s equation – II 

Faraday’s law: Faraday‟s law states that the induced emf in a circuit is equal to the time 

rate of decrease of total magnetic flux linked through the circuit. 

 



Surface

dsBbut,
dt

d
e  

     













 

Surface

dsB
dt

d
e

    

--- 4.15 

We know that emf „e‟ induced in a circuit can be represented as the line integral of the 

electric field intensity around the close path. i.e. 

 
Line

dlEe

     

--- 4.16 

Comparing equations 4.15 and 4.16, we have 














 

SurfaceLine

dsB
dt

d
dlE

    

--- 4.17 



















 

SurfaceLine

ds
t

B
dlE

    

--- 4.18 

Comparing equations 4.15 and 4.18, we obtain 

e
dt

d
dlE

Line





 

From equation 4.18, we obtain 

 HBds
t

H
dlE

SurfaceLine




















  

   

--- 4.19 

This is integral form of Maxwell‟s second equation. 

Physical significance:The emf induced around a closed path is equal to the negative rate 

of change of magnetic flux linked with the path. 

By applying Stoke‟s theorem 

  dsEdlE
SurfaceLine

 
   

--- 4.20 

Comparing equations 4.18 and 4.20, we obtain 
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 


















 

SurfaceSurface

ds
t

B
dsE  

or     
t

B
E






     
--- 4.21 

or
     t

H
E






    
--- 4.22 

This is the differential form of Maxwell‟s second equation. 

Maxwell’s equation – III 

Gauss’s law in electrostatics:The total electric flux emerging out of the closed surface is 

equal to the total charge enclosed by the surface. This can be written in integral form as 

Enclosed

Surface

QdsD 
    

--- 4.23 

QEnclosedcan be replaced by the volume integral of the charge density ρ. Therefore the 

charge enclosed by the given closed surface. 

i.e.  
V

Enclosed dvQ

    

--- 4.24 

Now, equation 4.23 becomes as 

 
VolumeSurface

dvdsD

    

--- 4.25 

or  EDdvdsE
VolumeSurface





    

This is integral form of Maxwell‟s third equation. 

Using divergence theorem, we can write 

  dDdsD
VolumeSurface

 

    

--- 4.26 

Comparing the above equations 4.25 and 4.26, we obtain 

   
VolumeVolume

dvdD

    

---4.27 

Assuming same volume for integration on both sides, we have 

 D      --- 4.28 

This is the differential form of Maxwell‟s third equation. In other words 

   EDE    

  



 E      --- 4.29 
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Physical significance:The outward flux of displacement vector through the surface 

enclosing a volume is equal to the net charge contained within the volume. 

Maxwell’s equation – IV 

Magnetic Gauss’ law: The total magnetic flux around any closed surface is equal to zero. 

 
Surface

0dsB      --- 4.30 

This is Maxwell‟s equation in integral form.  

By applying Divergence theorem, we have

 
    dBdsB

Surface Volume

   --- 4.31 

Comparing equations 4.30 and 4.31, we obtain 

  0dB
Volume

  

or        0B      --- 4.32 

This is differential form of Maxwell‟s fourth equation. 

Physical significance:Net outward flux of magnetic induction vector through the surface 

enclosing a volume is zero. 

Maxwell‟s equations are summarized as shown in Table 1. 

Table 1. Maxwell‟s equations in a conducting medium 

Integral form Differential form Significance 

   








Line Surface
ds

dt

dD
JdlH

 

or

 

   








Line Surface
ds

dt

dE
EdlH   

dt

dD
JHor 

 
or 

dt

dE
EHor    

Ampere‟s circuital 

law 









 




 

Surface
ds

t

B

Line
dlE

 

or 









 




 

SurfaceLine
ds

t

H
dlE   

t

B
E






 
or 

t

H
E




  

Faraday‟s Law 

 
VolumeSurface

dvdsD  

or 

 EDdvdsE
VolumeSurface

 



   

 D  




 E  

Gauss‟s law 

  0dB
Volume

    0B   No isolated magnetic 

charge 
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4.1.1 Maxwell equations in free space 

 In a free space, there are no charges enclosed. Free space is a non-conducting 

medium (i.e. dielectric) in which volume charge density ρ and conductivity σ are zero. 

Maxwell‟s equations in free space are summarized as shown in Table 2. 

Table 2.  Maxwell‟s equations in free space 

Integral form Differential form 

   








Line Surface
ds

dt

dD
dlH

 

or

 

   








Line Surface
ds

dt

dE
dlH   

dt

dD
Hor 

 

or 

dt

dE
Hor   









 




 

Surface
ds

t

B

Line
dlE

 

or 









 




 

SurfaceLine
ds

t

H
dlE  

t

B
E






 
or 

t

H
E




  

0dsD
Surface


 

or 

0dsE
Surface

  

 
0D   

or 

0E   

  0dB
Volume

   0B   

 

4.2 Plane wave equation in homogeneous medium and in free space 

 The propagation of electromagnetic wave can be explained easily with the help of 

Maxwell‟s equations. Electromagnetic wave equation can also be obtained from 

Maxwell‟s equations. 

4.2.1 In homogeneous medium 

From differential form of Maxwell‟s second equation, we have 

t

B
E






 

or      
t

H
E






 

Taking curl on both sides, we get 















t

H
E  
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





















t

H
E    --- 4.33 

From differential form of Maxwell‟s first equation, we have 

or     
dt

dE
EH 

 

Differentiating  

  






















t

E
E

t
H

t


 

2

2

t

E

t

E

t

H






















      --- 4.34 

Substituting equation 4.34 in 4.33

 




















2

2

t

E

t

E
E

 

2

2

t

E

t

E
E









     --- 4.35 

From vector identity, we have 

  EEE 2     --- 4.36 

Since there is no net charge within the conductor i.e. most of the region are source 

or charge free then the charge density ρ = 0. Therefore·E = 0 and hence  (·E) = 0. 

Now equation 4.36 is reduced as  

EE 2     --- 4.37 

Comparing equations 4.35 and 4.37, we obtain 

2

2
2

t

E

t

E
E









  

or    
2

2
2

t

E

t

E
E









     --- 4.38 

or    0
t

E

t

E
E

2

2
2 









     --- 4.39 

The equation 4.39 is known as the „wave equation for electric field E‟. 

The wave equation for H is obtained in a similar manner as above. 

The differential form of Maxwell‟s first equation is 

t

E
EH




   
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Taking curl on both sides, we get 















t

E
EH 

 

    
  














t

E
EH     --- 4.40

 

From differential form of Maxwell‟s second equation, we get 

t

H
E




     --- 4.41 

Differentiating 

2

2

t

H

t

E









     --- 4.42 

Substituting equations 4.41 and 4.42 in 4.40, we obtain 




















2

2

t

H

t

H
H               --- 4.43 

But from the vector identity formula 

  HHH 2  

But from Maxwell‟s fourth equation 

  0HB   

or       0HB   

Hence     HH 2     --- 4.44 

Comparing equations 4.43 and 4.44 




















2

2
2

t

H

t

H
H     --- 4.45 




















2

2
2

t

H

t

H
H  

0
t

H

t

H
H

2

2
2 

















    --- 4.46 

This is the wave equation for the magnetic field intensity H. 

4.2.2 In free space 

 Since there is no charge in free space (i.e. dielectric medium), the charge density 

(ρ) and hence the current density (J) is zero. The electromagnetic wave equations can be 

obtained from differential form of Maxwell‟s equations. 
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The wave equation for electric field is 

0
t

E

t

E
E

2

2
2 









  

 00
t

E

t

E
)0(E

2

2
2 









 --- 4.47 

0
t

E
E

2

2
2 




      --- 4.48 

This is the wave equation for free space in terms of electric field E. 

To obtain the wave equation for free space in terms of magnetic field, consider the wave 

equation for magnetic field intensity  

0
t

H

t

H
H

2

2
2 

















      

   00
t

H

t

H
0H

2

2
2 

















    --- 4.49 

0
t

H
H

2

2
2 












     --- 4.50 

This is the wave equation for free space in terms of magnetic field H. 

The value of µr = 1 for free space and εr= 1 for air, then wave equation 4.48 becomes 

0
t

E
E

2

2

00

2 



  

But   















9

7

00
1036

1
104  

1600
109

1


 or

800
103

1


  

secmc103
1 8

00




   

--- 4.51 

where c is the velocity of light. Hence the wave equation becomes 

0
t

E

c

1
E

2

2

2

2 



      --- 4.52 

and    0
t

H

c

1
H

2

2

2

2 



      --- 4.53 

4.3 Relation between E and H vectors in a uniform plane wave 

 A linearly polarized, uniform plane wave is one which satisfies the following 

conditions. 
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(a) At every point in space, E and H are perpendicular to each other and also to the 

direction of propagation of energy. 

(b) The fields vary harmonically with time and at the same frequency everywhere in 

space. 

(c) Each field has the same direction, magnitude and phase at every point in any plane 

perpendicular to the direction of wave propagation. 

 

Figure 4.1 

 

 Consider a wave travelling along x-direction as shown in Figure 4.1. It is noted 

that E and H are not having x-component along the direction of propagation of 

electromagnetic wave. From Faraday‟s law, we have 
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By right hand screw rule, we know that if E is acting in Y direction and 

propagating in x direction, then the magnetic field intensity H will be in positive z 

direction.  
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Therefore we conclude that  

   
t

B

y

E

x

E
zxy






















                         --- 4.54 

where B is acting in positive z direction. 

Let Ey be equal to sin (x-vt). Where v is the velocity, t is the time and x is the direction of 

propagationof electromagnetic wave. Hence we write 

             Ey = sin (x-vt)                                             --- 4.55 

The above relation means Ey is propagating in the positive y direction 

            
)vtx(cos

x

Ey




                                      --- 4.56 

Using equation 4.54, 4.56 can be taken as 

t

B
)vtx(cos z






 

dt)vtx(cosBz  
 

v

)vtx(sin
Bz




 

Using equation 4.55, we may write  

E
v

1
B 








      ---4.57 

This the relation between E and B, But we know, B=µH, hence we have 

E
v

1
H 








      ---4.58 

Moreover     

















1
v  

EH       --- 4.59 

or       EH



  

or       HE



      --- 4.60 

If the wave is propagating in free space, we have 

HE
0

0




  
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H
10854.8
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  

012

7

Z377
10854.8

104
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E











 

where Z0 is called the „wave impedance‟ of free space. 

From equation 4.60, we have 






H

E
     --- 4.61 

Equation 4.61 states that in a travelling plane wave there is a definite ratio between the 

amplitude of E and H. This ratio is equal to the square root of the ratio of permeability to 

the dielectric constant of the medium. 



has the unit of ohm as E is in Volt/m and H is 

in Amp/m. The ratio 



is known as characteristic impedance, η, or the intrinsic 

impedance of the medium. 

4.4 The wave equation for a conducting medium –Skin depth 

 In free space, the charge density ρfand the free current density Jfare zero. But in 

the case of conductors, ρfand Jf are not zero. According to Ohm‟s law, the current density 

in a conductor is proportional to the electric field. 

EJf      --- 4.62 

Therefore the Maxwell‟s equations for linear media are 

(i) 



 fE  

(ii) 0B   

(iii) 
t

B
E






         
--- 4.63 

(iv)
t

E
EB




  

Now the continuity equation for free current is given by 

   
t

Eor
t

E.or
t

J fff
f
















   
--- 4.64 

t
or;

t

f
f

ff


































  
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tor
t f

f
f

f 


































             --- 4.65 

Now integrating equation 4.65, we get 

Ctlog f 











  

When t=0, log ρf= log ρ(0). Hence   C00log f 



  

 0logC f  

Thus                                                 0loglog ff t 



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


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  t0loglog ff 
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Therefore                                        0f

t

f e 














      

 

t

0ff e















    

--- 4.66 

The initial free charge density ρf(0) dissipates in a characteristic time τ = (ε/σ). Put ρf= 0, 

then Maxwell‟s equations become  

(i) 0E   

(ii) 0B   

(iii) 
t

B
E




          --- 4.67 

(iv)
t

E
EB




  

Applying curl to equation 4.67 (iii) and (iv), we obtain 
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2

2
2

t

E

t

E
E









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2

2
2

t

E

t

E
E









     --- 4.68 

Similarly we have 

2

2
2

t

B

t

B
B









     --- 4.69 

The solutions for the electric and magnetic fields of a plane wave are given by 

  )wtkx(i

0eEt,xE  and   )wtkx(i

0eBt,xB   

Substituting these values into the wave equations 4.68, we have 

     )wtkx(i
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2
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







  

  )wtkx(i22

0

)wtkx(i

0

)wtkx(i22

0 eiEeiEekiE    

  )wtkx(i

0

2)wtkx(i

0

)wtkx(i

0

2 eEeEieEk1    

Cancelling the common term
)wtkx(i

0 eE  , we get 

22 ik   

or     
22 ik      ---4.70 

Let   ikkk , such that  22

  ikkk  

     ikk2kkikk2kikk
222222  

     kk2ikkk
222

    --- 4.71 

Comparing the real and imaginary parts of equations 4.70 and 4.71, we have 

    kk2andkk 222
 

Hence 

   22222
kk2andkk    

 222
kk4   

   2222 kk4    

   2422 k4k4    

  0k4k4
2422    

  0k4k4
2224
   
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--- 4.72 

Similarly we get, 
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--- 4.73 
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The imaginary part of k (i.e. k-) results in an attenuation of the wave i.e. decreasing 

amplitude with increasing x. Then  

  )wtkx(ixk

0 eeEt,xE   and   )wtkx(ixk

0 eeBt,xB  
 --- 4.74 

Greater is the value of k-,greater is the attenuation. The term 
k

1
measures the depth at 

which the electromagnetic wave entering a conductor is damped to 369.0
718.2

11


e
of 

its initial at the surface. This depth is known as the “skin depth” or the penetration depth. 

It is usually represented by „d‟. Therefore 
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



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


k

1
d      --- 4.75 
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--- 4.76 
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
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











   

--- 4.77 

Thus „d‟ measures the depth at which an electromagnetic wave penetrates into the 

conductor. 

 The real part of k i.e. k+determines the wavelength, the propagation speed and the 

index of refraction. Therefore 




 




ck

nand
k

v,
k

2
   --- 4.78 

For a good conductor, 1



, therefore σ >> ωε. Hence 

2
kk


      --- 4.79 

The skin depth decreases with increase in frequency. 
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 The good and poor conductors depend on the frequency i.e. the substance can be 

good conductor at low frequency and a poor one at high frequency. 

4.5 Wave propagation in dielectrics 

For a poor conductor, i.e. good dielectrics, 1
e





, therefore σ <<ωε. . Hence 
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But from equation 4.73
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The velocity of the electromagnetic wave in dielectric medium is 























22

2

8
1

k
v

 


















22

2

8
1

1
v

 





























1
v

8
1vv 022

2

0 

 
 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

81 
 

Then 
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Hence we have 




 

2
kandk    --- 4.80 

The skin depth decreases if either the conductivity σ or the permeability µ 

increases. The skin depth is independent of frequency. 
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4.6 Poynting vector and Poynting’s theorem 

 The work necessary to assemble a static charge distribution against the Coulomb 

repulsion of like charge is  




  dE
2

W
Volume

20
E

    

--- 4.81 

where E is the electric filed. 

 The work required to continue the current flow against the back emf is 




  dB
2

1
W

Volume

2

0

B

    

--- 4.82 

where B is the magnetic field. 

Thus the total amount of energy stored in the field is  







  dB
2

1
dE

2
WWW

Volume

2

0Volume

20
EBBE   --- 4.74 











  dB

1
E

2

1
W 2

0

2

0

Volume

EB
   --- 4.75 

Now let us consider some charge and current configuration at time t, which produces 

fields E and B. In the next instant of time, the charge dq moved around a bit. Therefore 

according to the Lorentz force law the work done on an element of charge dq by the 

electromagnetic forces is  

    vdtdlvdtBvEdqdlF     --- 4.76 

   vdtBvEdqdw      --- 4.77 

  vdtBvdqvdtEdqdw     --- 4.78 

Since the divergence of curl is zero, the second term in the right hand side of the equation 

4.78 becomes zero. Thus we have 

vdtEdqdw      --- 4.79 

dqdtvEdw      --- 4.80 

But                                          











d

dq
ddq   

Therefore                                  dtdvEdw    , but J = ρv 

Hence                                              dtdJEdw   
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or
     

 dJE
dt

dw

    
--- 4.81 

Therefore the total work done on all the charges in some volume V is given by 

     

    dJE
dt

dw

Volume

    --- 4.82 

In the above equation 4.82, (E·J) is the work done per unit time per unit volume and is 

also known as the power delivered per unit volume. In other words  dJE
Volume

represents 

the rate of energy transferred into the electromagnetic field through the motion of free 

charges in volume V. 

 In equation 4.82, J can be eliminated by expressing the quantity E·J in terms of 

field alone by using Ampere‟s law with Maxwell‟s extra term. 

t

E
JB 000




  

Taking scalar product E on both sides, we get 

    













t

E
EJEBE 000  

    













t

E
EJEBE 000  

or     
t

E
EBEJE 000




  

   
t

E
EBE

1
JE 0

0 





    --- 4.83 

But                                         BEEBBE   

     BEEBBE     --- 4.84 

From Faraday‟s law we have 

t

B
E




  

Now equation 4.84 becomes as  

   BE
t

B
BBE 












  

   BE
t

B
BBE 












    --- 4.85 

Substituting equation 4.85 in 4.83, we have 
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   
t

E
EBE

t

B
B

1
JE 0

0 



























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           But  2B
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1

t

B
B









      and  2E
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1

t

E
E









  
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
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
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
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
   --- 4.86 

Putting equation 4.86 in 4.82, we obtain 

  



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


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

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


  dBE

1
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1
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1

dt
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0

2

0

2

0Volume

  --- 4.87 

or             















  dBE

1
dEB

1

t2

1

dt

dw

Volume0Volume

2

0

2

0

  --- 4.88 

  













  dBE

1
dEB

1

2

1

dt

d

dt

dw

Volume0Volume

2

0

2

0

 --- 4.89 

By applying Gauss‟s divergence theorem, the second integral term becomes  

    daBEdBE
1

SurfaceVolume0

 


 

  daBE
1

dEB
1

2

1

dt

d

dt

dw

Surface0Volume

2

0

2

0

 













  --- 4.90 

This is known as Poynting theorem. It is also called as the work-energy theorem. 

 In equation 4.90, the first integral on the right represents the total energy stored in 

the fields. i.e. WEB. The second integral represents the rate at which energy is carried out 

of V, across its boundary surface by the electromagnetic fields. 

 Generally Poynting theorem says that the work done on the charges by the 

electromagnetic force is equal to the decrease in energy stored in the field, less the energy 

which flowed out through the surface. 
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 The energy per unit time, per unit area transported by the field is called the 

„Poynting vector‟ S and is also known as „energy flux density‟. Hence 

 BE
1

S
0




               --- 4.91 

 By using equations 4.75 and 4.91, Poynting theorem (i.e. equation 4.90) can be 

expressed more compactly as 

 
S

EB daSW
dt

d

dt

dw

  

    --- 4.92 

The work done W on the charges will increase their mechanical energy (i.e. kinetic, 

potential or whatsoever). Let UM be the mechanical energy density, then 

 dU
dt

d

dt

dw
M     --- 4.93 

Let UEB is the energy density of the field, then 









 2

o

2

0EB B
1

E
2

1
U




  

 --- 4.94 


V

EB
EB dU

dt

d

dt

dw
    --- 4.95 

Putting equations 4.93 and 4.95 in 4.92, we obtain 

   
SurfaceVolume

EBM

Volume

daSdU
dt

d
dU

dt

d
 

   
SurfaceVolume

EBM

Volume

daSdU
dt

d
dU

dt

d
 

   
Surface

EBM

Volume

daSdUU
dt

d
 

or       
Volume

EBM

Volume

daSdUU
dt

d
 

or       EBM UU
t

S 





    
--- 4.96 

This is the integral form of Poynting theorem.  

 Comparing it with the continuity equation,
t

J



 , expressing the 

conservation of charge, the charge density is replaced by the total energy density           
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(i.e. both mechanical and electrical) and the current density is replaced by the Poynting 

vector. S describes the flow of energy and J describes the flow of charge. 
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UNIT V : WAVES IN BOUNDED REGION AND RADIATION 

Reflection and refraction of EM waves at the boundary of two conducting media – 

Normal incidence and oblique incidence – Brewster‟s angle– Wave guides – Rectangular 

wave guide – Cavity resonators – Radiation from an oscillating dipole –Transmission line 

theory – Transmission line as distribution circuit– Basic transmission line equations  

5.1 Reflection and refraction of EM waves at the boundary of two conducting media 

 When the electromagnetic wave travelling in one medium smacks upon a second 

medium, the wave will be partially transmitted and partially reflected depending upon the 

constitutive parameters of media. Depending upon the manner in which the uniform plane 

is incident on the boundary, there are two classes of incidence. 

(i) Normal incidence: When a uniform plane wave incidences normally to the boundary 

between the media, it is known as normal incidence. 

(ii) Oblique incidence: When a uniform plane wave incidences obliquely to the boundary 

between the two media, then it is known as oblique incidence. 

5.1.1 Normal incidence 

When an electromagnetic wave travelling in one medium enters a second medium 

having different dielectric constant, permeability or conductivity, the wave will be 

partially transmitted and partially reflected mainly on account of discontinuity of the 

medium. In the case of a plane electromagnetic wave in air varying with time and incident 

normally upon the surface of a perfect conductor, the wave is entirely reflected because 

neither E nor B can exist within a perfect conductor. Since no energy is wasted in a 

perfect conductor, the amplitudes of E and B in the reflected wave are the same as in the 

incident wave. The only difference between the incident and reflected waves is in the 

direction of energy flow. 

 The boundary conditions used to analyse the reflection and refraction of 

electromagnetic wave through liner media are  

(i) f2211 EE 


 

(ii) 


 21 BB  

(iii) 
llll 21 EE         and           --- 5.1 

(iii) n̂KB
1

B
1

f2

2

1

1
llll







 

where σf  = free surface charge at the boundary,  

          Kf= free surface current at the boundary and 
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n̂ is the unit vector perpendicular to the surface pointing from medium 2 to medium 1. 

For ohmic conductors, the free current at the boundary is zero (i.e. Kf=0). 

 Consider the YZ plane forms the boundary between a non-conducting linear 

medium 1 and conducting medium 2. A monochromatic plane wave, travelling in the                    

x-direction and polarized in the y-direction, approaches from left to right as shown in 

Figure 5.1 

Figure 5.1 

 

The electric and magnetic fields of the incident wave are given by  

    
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This incident wave gives a reflected wave, which travels back to the left in medium 1. 

Hence the electric and magnetic fields of the reflected wave are 

    k
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  --- 5.2  

The transmitted wave continues to the right in medium 2. Hence 

 

  
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
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 



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0

2

T

)txk(i

0T

2

T

2

T

2

T

   

--- 5.3 

From equation 5.3, we observe that the transmitted wave is attenuated as it 

breaches into the conductor due to the complex nature of the wavenumber k. (k2 has 

imaginary part in accordance with k = k+ + ik-). 

At x = 0, 0Band0E    

Since 0E   on both sides, boundary condition 5.1 (i) yields σf  = 0  f000   . 
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Since 0B  , equation 5.1 (ii) is also equal to zero. But equation 5.1 (iii) gives 

TRI 000 E
~

E
~

E
~

      --- 5.4 

and equation 5.1 (iv) becomes  

)0K(0B
1

B
1

f2

2

1

1
llll








   

--- 5.5 

where µ1 and µ2 are the permeabilities of medium 1 and medium 2 respectively. 
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--- 5.10 

Adding equations 5.4 and 5.10, we get 
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~
E
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E
~

E
~

2
TTTI 0000   

--- 5.11 

         IT 00 E
~

1

2
E
~


               --- 5.12 

Subtracting equation 5.10 from 5.4, we obtain 
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E
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E
~

E
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TTTR 0000    

--- 5.13
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)1(
E
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     --- 5.14 

Putting equation 5.12 in 5.14, we have 
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IR 00 E

~

1

1
E
~





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






     --- 5.16 

For a perfect conductor, β is equal to infinite (i.e. σ =∞). Therefore we have 

IR 00 E
~

E
~

      --- 5.17 

0E
~

T0       --- 5.18 

Thus in the case of a perfect conductor, there is no transmitted wave. The incident 

wave is totally reflected with a 180° phase shift. That‟s why conductors such as silver 

make good mirrors. 

5.1.2 Reflection and transmission of electromagnetic wave in a matter at 

obliqueincidence 

 When a plane electromagnetic wave is incident obliquely on the boundary, a part 

of the wave is transmitted and part of it is reflected. In this case the transmitted wave will 

be refracted i.e. the direction of propagation will be changed (Figure 5.2). 

 

Figure 5.2 

 

The electric and magnetic field vectors of the incident wave are given by  
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~
andeE

~
t,rE

~
   ---5.19 

This incident wave gives a reflected wave, which travels back to the left in medium 1. 

Hence the electric and magnetic fields of the reflected wave are 
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  --- 5.20 

The transmitted wave continues to the right in medium 2. Hence 
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~
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 
  --- 5.21 

According to the boundary conditions, the combined electric and magnetic fields in 

medium 1 is equal to the fields in medium 2. i.e., RIRI BBEE  . 

The boundary conditions for the field vectors E and B are  

(i) 


 2211 EE  

(ii) 


 21 BB  

(iii) 
llll 21 EE         and  

(iii) 
llll 2

2

1

1

B
1

B
1





 

Hence applying the boundary conditions, the field equations become as 

    x02x001 TRI
EEE      --- 5.22 

    
    x0x00 TRI

BBB                     ---5.23 

    z,y0z,y00 TRI
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B
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
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
   ---5.25 

Assume that the incident wave is parallel to xy plane (Figure 5.3). 

 

Figure 5.3 
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Now the equation 5.22 becomes as 

   T02R0I01 sinEsinEsinE
TRI

   --- 5.26 

where TRI and,  are the angle of incidence, reflection and transmission 

respectively. 

Equation 5.23 becomes zero since the magnetic fields have no x components.                   

From equation 5.24, we have  

   T0R0I0 cosEcosEcosE
TRI

   --- 5.27 

Since 00 E
v

1
B  , equation 5.25 can be rewritten as 
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when RI  , the equation 5.27 becomes  
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Adding equations 5.29 and 5.30, we get 

   
TTRIRI 000000 EEEEEE   

TTRIRI 000000 EEEEEE   

 
TI 00 EE2   

  IT 00 E
2

E


     --- 5.31 

Subtracting equation 5.30 from 5.29, we get 

 
TR 00 EE2   

      
TR 00 EE2      --- 5.32 

Substituting equation 5.31 in 5.32, we obtain 
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 
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
  

 
  IR 00 EE
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
     --- 5.33 

Equations 5.31 and 5.33 are known as “Fresnel‟s equations” for polarization in the plane 

of incidence. 

If α > β, then the reflected wave is in phase with the incident wave and if α < β, the 

reflected wave is out of phase with the incident wave. 

 The amplitudes of the transmitted and reflected waves depend on the angle of 

incidence. This is because α is a function of θI. 
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--- 5.35 

Case (i) when the incidence is normal to the plane boundary, then θI = 0. Hence, α=1. 

Case (ii) at grazing incidence, i.e. θI = 90°, α diverges and the wave is totally reflected. 

Case (iii) at an intermediate angle, the reflected wave is completely extinguished.

0E.e.i
R0  . This is possible only when α = β. Thus the angle of incidence at which the 

reflected wave is completely extinguished is known as „Brewster‟s angle‟. 

The reflection coefficient for waves polarized parallel to the plane of incidence is 
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[The average power per unit area (i.e. intensity) I = 
2

0vE
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Then the transmission coefficient is 
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According to the law of conservation of energy, R+T=1. At Brewster‟s angle, the 

reflection coefficient R becomes zero and the transmission coefficient T becomes 1, 

hence the law of conservation of energy is conserved. That is the energy per unit time 

reaching a particular spot of area on the surface is equal to the energy per unit time 

leaving the spot. 

5.2 Brewster’s angle 

The angle of incidence at which the reflected wave is completely extinguished is 

known as „Brewster‟s angle‟. 

When α = β, from equation 5.35, we have 
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If µ1 = µ2, then 
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 . Now the equation 5.43 becomes 
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We may deduce 
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1

21

B
n

n
tan     --- 5.46 

At this angle θB, which we call Brewster‟s angle, there is no reflected wave. Quartz 

windows of gas-laser in the gas discharge tube are inclined to the Brewster‟s angle to 

minimize reflection losses. Because of these windows the laser output is almost linearly 

polarized. 

5.3 Wave guides 

 Waveguides, like transmission lines, are structures used to guideelectromagnetic 

wavesfrom point to point. However, the fundamentalcharacteristics of waveguide and 

transmission line waves (modes) are quitedifferent. The differences in these modes result 

from the basic differencesin geometry for a transmission line and a 

waveguide.Waveguides can be generally classified as either metal waveguides 

ordielectric waveguides(Figure 5.4).  
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Figure 5.4 
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Metal waveguides normally take the form of anenclosed conducting metal pipe. 

The waves propagating inside the metalwaveguide may be characterized by reflections 

from the conducting walls.The dielectric waveguide consists of dielectrics only and 

employsreflections from dielectric interfaces to propagate the electromagnetic wavealong 

the waveguide. 

A wave guide is a hollow pipe of infinite length. Now let us discuss the 

propagation of electromagnetic waves along a hollow conducting pipe. Consider an 

electromagnetic wave confined to the interior of a hollow cylindrical pipe or wave guide. 

Here we assume that the wave guide is a perfect conductor. So that E=0 and B=0 inside 

the material itself. The boundary conditions at the inner walls of the waveguide are 

0B)ii(and0E)i( ll    

From Maxwell‟s equations, we have 
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 The confined waves are not transverse. In order to fit the boundary conditions, we 

have to include the longitudinal components of the fields Ex and Bx. Hence we have 
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Substituting equation 5.55 in 5.51 
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Similarly we can obtain Ez, By and Bz 
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Then it is very easy to find the longitudinal components Ex and Bx. From equation 5.48, 

we have  
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Putting the values of Ez (equation 5.55b) and Ey (equation 5.55a), we get 
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5.3.2 Mode Classification 

In uniform waveguides it is common to classify the various wave solutions found 

from the previous analysisinto the following types: 

(i) TEM waves: Waves with no electric or magnetic field in the direction of propagation 

(Bx = Ex = 0).Plane waves and transmission-line waves are common examples. 

(ii) TM waves: Waves with an electric field but no magnetic field in the direction of 

propagation (Bx =0,Ex 0). These are sometimes referred to as E waves. 

(iii) TE waves: Waves with a magnetic field but no electric field in the direction of 

propagation (Bx 0,Ex= 0). These are sometimes referred to as B waves. 

(iv) Hybrid waves: Sometimes the boundary conditions require all field components. 

These waves can beconsidered as a coupling of TE and TM modes by the boundary. 

5.4 Rectangular waveguides 

Rectangular waveguides (Figure 5.5) are the one of the earliest type of the 

transmission lines. They are used in manyapplications. A lot of components such as 

isolators, detectors, attenuators, couplers and slotted lines areavailable for various 

standard waveguide bands between 1 GHz to above 220 GHz.A rectangular waveguide 

supports TM and TE modes but not TEM waves because we cannot define a 

uniquevoltage since there is only one conductor in a rectangular waveguide. The shape of 

a rectangular waveguideis as shown below. A material with permittivity ε and 

permeability µ fills the inside of the conductor.A rectangular waveguide cannot propagate 

below somecertain frequency. This frequency is called the cut-offfrequency. 

 

 

Figure 5.5 
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5.5 Cavity resonators 

A cavity is known as a space totally enclosed by a metallic conductor and excited 

in such a way that it becomes a source of electromagnetic oscillations. The different types 

of cavities are: microwave cavity, microwave resonance cavity, resonant cavity, resonant 

chamber, resonant element, rhumbatron, tuned cavity and waveguide resonator. 

Cavity Resonator is an oscillatory system that operates at super high frequencies.It 

is the analogy of an oscillatory circuit. The cavity resonator has the form of a volume 

filled with a dielectric-air, in most cases. The volume is bounded by a conducting surface 

or by a space having differing electrical or magnetic properties. Hollow cavity resonators 

i.e. cavities enclosed by metal walls-are most widely used. Generally, the boundary 

surface of a cavity resonator can have an arbitrary shape. However,in practice, only a few 

very simple shapes are used because such shapes simplify the configuration of the 

electromagnetic field, the design and manufacture of resonators. These shapes include 

right circular cylinders, rectangular parallelepipeds, toroids, and spheres. It is convenient 

to regard some types of cavity resonators as sections of hollow or dielectric wave guides 

limited by two parallel planes. 

The solution of the problem of the natural (or normal) modes of oscillation of the 

electromagnetic field in a cavity resonator reduces to the solution of Maxwell‟s equations 

with appropriate boundary conditions. The process of storing electromagnetic energy in a 

cavity resonator can be clarified by the following example: if a plane wave is in some 

way excited between two parallel reflecting planes such that the wave propagation is 

perpendicular to the planes, then when the wave arrives at one of the planes, it will be 

totally reflected. Multiple reflection from the two planes produces waves that propagate 

in opposite directions and interfere with each other. If the distance between the planes is 

L = nλ/2, where λ is the wavelength and n is an integer, then the interference of the waves 

will produce a standing wave (Figure 5.6).The amplitude of this wave will increase 

rapidly if multiple reflections are present. Electromagnetic energy will be stored in the 

space between the planes. This effect is similar to the resonance effect in an oscillatory 

circuit. 

5.5.1. Quality of the resonator 

Normal oscillations can exist in a cavity resonator for an infinitely long time if 

there are no energy losses. However, in practice, energy losses in a cavity resonator are 

unavoidable. The alternating magnetic field induces electric currents on the inside walls 
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of the resonator, which heat the walls and thus cause energy losses (conduction losses). 

Moreover, if there are apertures in the walls of the cavity and if these apertures intersect 

the lines of current, then an electromagnetic field will be generated outside the cavity, 

which causes energy losses by radiation. In addition, there are energy losses within the 

dielectric and losses caused by coupling with external circuits. The ratio of energy that is 

stored in a cavity resonator to the total losses in the resonator taken over one oscillation is 

called the „figure of merit‟, or „quality factor‟, or „Q‟, of the cavity resonator. The higher 

the figure of merit, the better is the quality of the resonator. 

Figure 5.6 

 

By analogy with wave guides, the oscillations that occur in a cavity resonator are 

classified in groups. In this classification, the grouping depends on the presence or 

absence of axial and radial (transverse) components in the spatial distribution of the 

electromagnetic field. Oscillations of the B (or TE) type have an axial component in the 

magnetic field only; oscillations of the E (or TM) type have an axial component in the 

electric field only. Finally, oscillations of the TEM type do not have axial components in 

either the electric or the magnetic field. An example of a cavity resonator in which TEM 

oscillations can be excited is the cavity between two conducting coaxial cylinders having 

end boundaries that are formed by plane conducting walls perpendicular to the axis of the 

cylinders. 
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5.6 Radiation from an oscillating dipole 

Consider two metal spheres separated by a distance s and connected by a wire as 

shown in Figure 5.7.  

Let q(t) be the charge on the upper sphere and –q (t) be the charge on the lower 

sphere in time t. Also assume that the two charges are driven to move back and forth from 

one end to the other at a frequency ω. Therefore 

tcosq)t(q 0      --- 5.47 

 

Figure 5.7 

 

An oscillating electric dipole is described as  

s)t(q)t(P       --- 5.48 
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or     000 psqk̂tcosp)t(P      --- 5.49 

where p0 is the maximum value of the dipole moment. 

The retarded potential at P is given by 
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Using law of cosines, we may have 
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--- 5.56 

]BsinAsinBcosAcos)BA(cosFrom[   

For perfect dipole, s <<r 

  smallveryis,10cos,1cos
c2

s
cos 











     
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and    smallveryis,sincos
c2

s
cos

c2

s
sin 














  

Now equation 5.56 becomes as 

 










































 cos

c2

s

c

r
tsin

c

r
tcoscos

c2

s

c

r
tcos   --- 5.57 

Substituting equation 5.57 in 5.55, we obtain 





























 

c

r
tsincos

c2

s

c

r
tcos

c

r
tcos   

Substituting equations 5.53 and 5.57 in 5.50, we get 








































































































cos
r

s

2

1
1

r

1

c

r
tsincos

c2

s

c

r
tcos

cos
r

s

2

1
1

r

1

c

r
tsincos

c2

s

c

r
tcos

4

q
)t,,r(V

0

0

 

--- 5.58 


























































































































c

r
tsincos

rc4

s

c

r
tcoscos

r

s

2

1

c

r
tsincos

c2

s

c

r
tcos

c

r
tsincos

rc4

s

c

r
tcoscos

r

s

2

1

c

r
tsincos

c2

s

c

r
tcos

r

1

4

q
)t,,r(V

2
2

2
2

0

0  


































c

r
tcoscos

r

s

2

1
2

c

r
tsincos

c2

s
2

r

1

4

q
)t,,r(V

0

0

 










































c

r
tcoscos

r

s

c

r
tsincos

c

s

r

1

4

q
)t,,r(V

0

0  


































c

r
tcos

r

1

c

r
tsin

c
coss

r

1

4

q
)t,,r(V

0

0  

 



































c

r
tcos

r

1

c

r
tsin

cr4

cossq
)t,,r(V

0

0  




































c

r
tcos

r

1

c

r
tsin

cr4

cosp
)t,,r(V

0

0  --- 5.59 

In the static limit i.e. ω = 0 
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   












 1

r

1
0

r4

cosp
)t,,r(V

0

0  

2

0

0

r4

cosp
)t,,r(V




      --- 5.60 

The equation 5.60 gives the potential of an oscillating electric dipole. 

 In radiation zone, i.e. the field at large distance from the source i.e. 


c
r  , the 

second term in equation 5.59 vanishes. 



























c

r
tsin

cr4

cosp
)t,,r(V

0

0  


































 






c

r
tsin

r

cos

c4

p
)t,,r(V

0

0    


































 






c

r
tsin

r

cos

c4

p
)t,,r(V

0

0 --- 5.61 

The vector potential is determined by the current flowing through the wire. Hence we 

write 

k̂
dt

dq
)t(I   

 k̂tcosq
dt

dq
)t(I 0   

k̂tsinq)t(I 0 
 

Therefore the vector potential due to an oscillating dipole is 

 
































  8.5FigureFromdz

r

k̂
c

R
tsinq

4
)t,r(A

02
s

2
s

0  --- 5.62 
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The integration itself introduces a factor s. Hence, we can replace the integrand by its 

value at the centre. i.e.  

k̂
2

s

2

s

c

r
tsin

r4

q
)t,,r(A 00

































 
  k̂s

c

r
tsin

r4

q
)t,,r(A 00
















 
k̂

c

r
tsin

r4

sq
)t,,r(A 00














  

 00
00 psqk̂

c

r
tsin

r4

p
)t,,r(A 













   --- 5.63 

For spherical coordinates 

 ˆsinr̂cosk̂   

Hence equation 5.63 becomes 

 












 ˆsinr̂cos

c

r
tsin

r4

p
)t,,r(A 00   --- 5.64 

From the scalar potential equation we have, 










 ˆV

r

1
r̂

r

V
V     --- 5.65 

Substituting equation 5.61 in 5.65, we get 


























 



































 











ˆ
c

r
tsin

r

cos

c4

p

r

1

r̂
c

r
tsin

r

cos

c4

p

r
V

0

0

0

0

  --- 5.66 

Figure 5.8 
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  















































 


































ˆsin
c

r
tsin

c4

p

r

1

r̂
cc

r
tcos

r

1

c

r
tsin

r

1
cos

c4

p
V

0

0

2

2

0

0

  --- 5.67 

Since r >>


c
, then r

2
is very large and therefore

2r

1
 can be neglected. Hence equation 5.67 

becomes as 

r̂
cc

r
tcos

r

1
cos

c4

p
V

0

0
















 














  

r̂
c

r
tcos

r

cos

c4

p
V

2

0

2

0
















 




    --- 5.68 

Then from equation 5.65, we have 

 






























 ˆsinr̂cos
c

r
tsin

r4

p

tt

A 00  

 
















 ˆsinr̂cos
c

r
tcos

r4

p

t

A 2

00   --- 5.69 

The relation between the electric field, scalar potential and vector potential is given by 

t

A
VE




     --- 5.70 

Substituting equations 5.68 and 5.69 in 5.70, we get 

 





























 






ˆsinr̂cos
c

r
tcos

r4

p

r̂
c

r
tcos

r

cos

c4

p
E

2

00

2

0

2

0

  --- 5.71 

We know 













4

p

1
4

p
thereforeand

1
c

2

00

00

0

2

0

00

2
 

Now equation 5.71 can be rewritten as  












































ˆsin
c

r
tcos

r4

p

r̂cos
c

r
tcos

r4

p

c

r
tcosr̂cos

r4

p
E

2

00

2

00

2

00

  --- 5.72 

















 




 ˆ

c

r
tcos

r

sin

4

p
E

2

00   --- 5.73 
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Then       
















 

ˆ
A

rA
rr

1
A r    --- 5.74 

Putting equation 5.64 in 5.74, we obtain 



































 ˆ

c

r
tsin

r

sin

c

r
tcossin

cr4

p
A 00  --- 5.75 

Since r >>


c
, the second term in equation 5.75 vanishes. Hence 
























 ˆ

c

r
tcossin

cr4

p
A 00    --- 5.76 

But we know B = ×A. Therefore the magnetic field B is given by 














 ˆ

c

r
tcossin

rc4

p
B

2

00     

or   















 




 ˆ

c

r
tcos

r

sin

c4

p
B

2

00    --- 5.77 

Equations 5.73 and 5.77 are the electric and magnetic field vectors (E and B respectively) 

of monochromatic waves of frequency ω propagating in the radial direction with a 

velocity of light. E and B are also in phase, transverse and mutually perpendicular. The 

ratio of their amplitudes of the field vectors is equal to the velocity of light i.e. C
B

E

0

0

 . 

 The energy radiated by an oscillating electric dipole is determined by Poynting 

vector S. 

)BE(
1

S
0




     --- 5.78 

Therefore 

























 





















 







 ˆ

c

r
tcos

r

sin

c4

pˆ
c

r
tcos

r

sin

4

p1
S

2

00

2

00

0

 

 r̂ˆˆr̂
c

r
tcos

r

sin

4

p

c

1
S

2
2

0

2

0

0

























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The intensity of the wave is obtained by taking the time average of equation 5.79 over a 

complete cycle. Hence we obtain 
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Along the axis of the dipole sin θ = 0. Hence there is no radiation along the direction of 

axis of the dipole. Therefore the profile of the intensity of radiation seems to be a donut 

with its maximum in the equatorial plane (Figure 5.9). 

  

 

 

 

 

 

 

 

 

 

The total power radiated by the oscillating electric dipole is found by integrating S over a 
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Figure 5.9 
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This quantity is independent of radius of sphere. Therefore the conservation of energy is 

expected. 

5.7 Transmission Lines Theory 

In an electronic system, the delivery of power requires the connection of two 

wires between the source and the load. At low frequencies, power is considered to be 

delivered to the load through the wire.  

In the microwave frequency region, power is considered to be in electric and 

magnetic fields which are guided by some physical structure. Any physical structure that 

will guide an electromagnetic wave one place to other place is called a Transmission 

Line. 

A transmission line is a device designedto guide electromagnetic energy from one 

point to another. For example, it is used to transfer the output rf energyof a transmitter to 

an antenna. This energy will nottravel through normal electrical wire without greatlosses. 

Although the antenna can be connecteddirectly to the transmitter, the antenna is 

usuallylocated some distance away from the transmitter. A transmission line is used to 
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connect the transmitter and the antenna.The use of the transmission line purpose is 

totransfer the energy from the transmitter to theantenna with the least possible power loss. 

The transmission quality depends on the special physical andelectrical characteristics 

(impedance and resistance)of the transmission line. 

5.7.1 Types of Transmission Lines 

 The types of transmission lines include 

Coaxial cable 

Two wire line 

Parallel plate or parallel line 

Micro-strip line 

A wire above the conducting plane 

Optical fiber 

The different types of transmission lines are portrayed in Figure 5.10. 

 

Longitudinal view Cross sectional view 

 

 

 

 

Coaxial line 

 

Two-wire line (ac) 

 

Two-wire line (dc) 

 

 

 

 

 

 

Parallel plate or parallel line 

 

 

 

 

 

 

Micro-strip line 
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The electric field is associated with the potential difference between the two ends 

of the conductor. When an electromagnetic wave propagates through the line, both the 

electric and magnetic fields are at right angles to each other. The plane containing both 

the fields is at right angle to the axis of the conductor. It means that the electric energy 

flows at right angle to the plane containing the electric and magnetic vectors. This type of 

transmission is technically known as transverse electric (TE) and transverse magnetic 

(TM) mode. This type of transfer of signal from transmitting end to the receiving end is 

called wire line connection. Thus the transmission line can be regarded as a guiding field 

so that it is confined near the line rather than spreading in space. 

5.7.2 Electric current parameters 

Transmission line constants, called distributedconstants, are spread along the 

entire length of thetransmission line and cannot be distinguished separately.The amount 

of inductance, capacitance, andresistance depends on the length of the line, the sizeof the 

conducting wires, the spacing between thewires, and the dielectric (air or insulating 

medium)between the wires.  

Inductance of a transmission line 

When current flows through a wire, magnetic linesof force are set up around the 

wire. As the currentincreases and decreases in amplitude, the field aroundthe wire 

expands and collapses accordingly. Theenergy produced by the magnetic lines of 

forcecollapsing back into the wire tends to keep the currentflowing in the same direction. 

This represents a certainamount of inductance (L), which is expressed inmicrohenrys per 

unit length.  

Capacitance of a transmission line 

Capacitance (C) also exists between the transmissionline wires. Notice thatthe two 

parallel wires act as plates of a capacitor andthat the air between them acts as a dielectric. 

 

 

 

 

 

Wire above conducting plane 

 

 

Optical fiber 

 

Figure 5.6 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

115 
 

Thecapacitance between the wires is usually expressedin pico-farads per unit length. This 

electric fieldbetween the wires is similar to the field that existsbetween the two plates of a 

capacitor. 

Resistance of a transmission line 

The transmission line has electrical resistance (R) along its length. This 

resistanceis usually expressed in ohms per unit length and existing continuously from one 

end of theline to the other. 

Leakage current 

Since any dielectric, even air, is not a perfectinsulator, a small current known as 

leakagecurrent flows between the two wires. In effect, the insulator acts as a resistor, 

permitting current topass between the two wires. This property is called conductance (G) 

and is the opposite of resistance.Conductance in transmission lines is expressed as 

thereciprocal of resistance and is usually given inmicromhos per unit length. 

5.8 Transmission line as distribution circuit 

 The equivalent circuit of a transmission line is shown in Figure 5.11. The 

inductance (L), resistance (R), conductance (G) and capacitance (C) are distributed 

uniformly along the entire length l of the transmission line. Each conductor of the line has 

certain length and diameter. So, it is said to be a uniform transmission line. The analysis 

based on this model is known as “Distributed parameter” model of a transmission line. 

Figure 5.11 

 

At radiofrequencies: The frequency of radio waves is very high, so the inductive 

reactance (ωL) is much larger than the resistance R i.e. ωL >> R. Also the capacitive 

substance (ωC) is larger to the shunt conductance „G‟ i.e. ωC >> G. Here we can write the 

simplified equivalent circuit representation of a transmission line. 

 The are two ideal cases for any transmission line are 

(a) infinite length (l = ∞ ) and 

(b) lossless transmission line (i.e. R = 0 and G = 0) 
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5.9 Basic transmission line equations 

 The basic transmission line equations can be analysed either by using Maxwell‟s 

equations or distributed circuit parameter theory. The later has the more advantage than 

the former because it involves only one space variable and use one dimensional 

differential equations. 

 The current and voltage varies from point to point along the transmission line. The 

various notations used in this derivation are given below. 

R  = Series resistance of the line 

L  = Series inductance of the line 

C  = Series capacitance between the conductors 

G  = Shunt leakage conductance 

ωL= Series reactance 

ωC= Shunt capacitance 

Z  = R+jωL, Series impedance 

Y  = R+jωL, Shunt admittance 

S   = Distance measured form receiving end 

I   = Current in the line at any point 

E  = Voltage between any two points in the conductor 

L  = Length of the wire 

The transmission line of length l can be made up of infinite T-sections as shown in 

Figure 5.12. 

Figure 5.12 

 

The point under consideration is at a distance S from the receiving end. The length 

of section is ds, hence its series impedance is Zds and shunt admittance is Yds. Here we 

assume that L is variable If C is variable then R, L and G are constants. 

The condition for distortionless transmission can be derived as follows. 
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A line in which there is no phase or frequency distortion and it is correctly 

terminated is called distortionless line. 

 

 

 

 

 

 

Figure 5.13 

Transmission line with series impedance Z and shunt admittance Y is shown in 

Figure 5.13. Referring to Figure 5.13, we have in the more general case for sinusoidal 

variation of V and I with R and C are not zero. Hence a series impedance 

    LjRZ       --- 5.83 

and a shunt admittance 

CjGY      --- 5.84 

Where ω = 2πf, angular frequency 

 The square root of ZY is known as the propagation constant, γ, which may have 

real and imaginary parts. Hence the propagation constant (γ) is given by 

  CjGLjR 
    

--- 5.85 

Squaring on both sides 
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In order to get minimum attenuation, RC = LG, hence we have 
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or        j     --- 5.86 

where α = real part i.e. attenuation constant =  RG  

    and β = imaginary part i.e. phase constant = LC  

This is the required condition for attenuation less i.e. loss less transmission line. 

5.3.1 Comparison of Waveguide and Transmission Line Characteristics 

 

 

Transmission line Waveguide 

• Two or more conductorsseparated by some 

insulatingmedium (two-wire, coaxial, 

microstrip, etc.). 

• Metal waveguides are typicallyone 

enclosed conductor filledwith an 

insulating mediumwhile a dielectric 

waveguide consists ofmultiple dielectrics. 

• Normal operating mode is theTEM or 

quasi-TEM mode (cansupport TE and TM 

modes butthese modes are typically 

undesirable). 

 • Operating modes are TE or TMmodes 

(cannot support a TEMmode). 

• No cut-off frequency for the TEMmode. 

Transmission lines cantransmit signals from 

DC up tohigh frequency. 

• Must operate the waveguide at 

afrequency above the respectiveTE or TM 

mode cut-off frequencyfor that mode 

topropagate. 

•Significant signal attenuation athigh 

frequencies due toconductor and dielectric 

losses. 

• Lower signal attenuation at 

highfrequencies than transmission lines. 

• Small cross-section transmissionlines (like 

coaxial cables) canonly transmit low power 

levelsdue to the relatively high 

fieldsconcentrated at specific 

locationswithin the device (field levels 

arelimited by dielectric breakdown). 

• Metal waveguides can transmithigh 

power levels. The fields ofthe propagating 

wave are spreadmore uniformly over a 

largercross-sectional area than thesmall 

cross-section transmissionline. 

 

• Large cross-section transmissionlines (like 

power transmissionlines) can transmit high 

powerlevels. 

• Large cross-section (lowfrequency) 

waveguides areimpractical due to large 

size andhigh cost. 
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